Dynamic microscale flow patterning using electrical modulation of zeta potential
The ability to move fluids at the microscale is at the core of many scientific and technological advancements. Despite its importance, microscale flow control remains highly limited by the use of discrete channels and mechanical valves, and relies on fixed geometries. Here we present an alternative...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-05, Vol.116 (21), p.10258-10263 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10263 |
---|---|
container_issue | 21 |
container_start_page | 10258 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Paratore, Federico Bacheva, Vesna Kaigala, Govind V. Bercovici, Moran |
description | The ability to move fluids at the microscale is at the core of many scientific and technological advancements. Despite its importance, microscale flow control remains highly limited by the use of discrete channels and mechanical valves, and relies on fixed geometries. Here we present an alternative mechanism that leverages localized field-effect electroosmosis to create dynamic flow patterns, allowing fluid manipulation without the use of physical walls. We control a set of gate electrodes embedded in the floor of a fluidic chamber using an ac voltage in sync with an external electric field, creating nonuniform electroosmotic flow distributions. These give rise to a pressure field that drives the flow throughout the chamber. We demonstrate a range of unique flow patterns that can be achieved, including regions of recirculating flow surrounded by quiescent fluid and volumes of complete stagnation within a moving fluid. We also demonstrate the interaction of multiple gate electrodes with an externally generated flow field, allowing spatial modulation of streamlines in real time. Furthermore, we provide a characterization of the system in terms of time response and dielectric breakdown, as well as engineering guidelines for its robust design and operation. We believe that the ability to create tailored microscale flow using solid-state actuation will open the door to entirely new on-chip functionalities. |
doi_str_mv | 10.1073/pnas.1821269116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6534970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26706244</jstor_id><sourcerecordid>26706244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-a63a771f1dae3c0b69c02e81461c3deffae82c545724686e8f7d6256398d3fb43</originalsourceid><addsrcrecordid>eNpdkc2PFCEQxYnRuLOrZ0-aTrzspXcpoIG-mJj1M9lED3omDA0rExpaoDXrXy_jrOPHoajD-_Gg6iH0BPAFYEEvl6jLBUgChI8A_B7aAB6h52zE99EGYyJ6yQg7Qael7DDG4yDxQ3RCAXMAAhv08dVt1LM3XaucitHBdi6k792ia7U5-njTrWV_2mBNzb4R3ZymNejqU-yS637YqrslVRur1-EReuB0KPbxXT9Dn9-8_nT1rr_-8Pb91cvr3gx4rL3mVAsBDiZtqcFbPhpMrATGwdDJOqetJGZggyCMS26lExMnA6ejnKjbMnqGXhx8l3U728m017MOasl-1vlWJe3Vv0r0X9RN-qb4QNkocDM4vzPI6etqS1WzL8aGoKNNa1GEUNIW1uCGPv8P3aU1xzbeLwpkY0SjLg_UfpElW3f8DGC1T0vt01J_0mo3nv09w5H_HU8Dnh6AXakpH3XCBeaEMfoTaV2bqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232184937</pqid></control><display><type>article</type><title>Dynamic microscale flow patterning using electrical modulation of zeta potential</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Paratore, Federico ; Bacheva, Vesna ; Kaigala, Govind V. ; Bercovici, Moran</creator><creatorcontrib>Paratore, Federico ; Bacheva, Vesna ; Kaigala, Govind V. ; Bercovici, Moran</creatorcontrib><description>The ability to move fluids at the microscale is at the core of many scientific and technological advancements. Despite its importance, microscale flow control remains highly limited by the use of discrete channels and mechanical valves, and relies on fixed geometries. Here we present an alternative mechanism that leverages localized field-effect electroosmosis to create dynamic flow patterns, allowing fluid manipulation without the use of physical walls. We control a set of gate electrodes embedded in the floor of a fluidic chamber using an ac voltage in sync with an external electric field, creating nonuniform electroosmotic flow distributions. These give rise to a pressure field that drives the flow throughout the chamber. We demonstrate a range of unique flow patterns that can be achieved, including regions of recirculating flow surrounded by quiescent fluid and volumes of complete stagnation within a moving fluid. We also demonstrate the interaction of multiple gate electrodes with an externally generated flow field, allowing spatial modulation of streamlines in real time. Furthermore, we provide a characterization of the system in terms of time response and dielectric breakdown, as well as engineering guidelines for its robust design and operation. We believe that the ability to create tailored microscale flow using solid-state actuation will open the door to entirely new on-chip functionalities.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1821269116</identifier><identifier>PMID: 31061121</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actuation ; Dielectric breakdown ; Electric fields ; Electrodes ; Electroosmosis ; Flow control ; Fluid flow ; Fluids ; Modulation ; Physical Sciences ; Stagnation ; Time response ; Zeta potential</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-05, Vol.116 (21), p.10258-10263</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences May 21, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-a63a771f1dae3c0b69c02e81461c3deffae82c545724686e8f7d6256398d3fb43</citedby><cites>FETCH-LOGICAL-c509t-a63a771f1dae3c0b69c02e81461c3deffae82c545724686e8f7d6256398d3fb43</cites><orcidid>0000-0002-4444-1938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26706244$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26706244$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31061121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paratore, Federico</creatorcontrib><creatorcontrib>Bacheva, Vesna</creatorcontrib><creatorcontrib>Kaigala, Govind V.</creatorcontrib><creatorcontrib>Bercovici, Moran</creatorcontrib><title>Dynamic microscale flow patterning using electrical modulation of zeta potential</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The ability to move fluids at the microscale is at the core of many scientific and technological advancements. Despite its importance, microscale flow control remains highly limited by the use of discrete channels and mechanical valves, and relies on fixed geometries. Here we present an alternative mechanism that leverages localized field-effect electroosmosis to create dynamic flow patterns, allowing fluid manipulation without the use of physical walls. We control a set of gate electrodes embedded in the floor of a fluidic chamber using an ac voltage in sync with an external electric field, creating nonuniform electroosmotic flow distributions. These give rise to a pressure field that drives the flow throughout the chamber. We demonstrate a range of unique flow patterns that can be achieved, including regions of recirculating flow surrounded by quiescent fluid and volumes of complete stagnation within a moving fluid. We also demonstrate the interaction of multiple gate electrodes with an externally generated flow field, allowing spatial modulation of streamlines in real time. Furthermore, we provide a characterization of the system in terms of time response and dielectric breakdown, as well as engineering guidelines for its robust design and operation. We believe that the ability to create tailored microscale flow using solid-state actuation will open the door to entirely new on-chip functionalities.</description><subject>Actuation</subject><subject>Dielectric breakdown</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Electroosmosis</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Modulation</subject><subject>Physical Sciences</subject><subject>Stagnation</subject><subject>Time response</subject><subject>Zeta potential</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc2PFCEQxYnRuLOrZ0-aTrzspXcpoIG-mJj1M9lED3omDA0rExpaoDXrXy_jrOPHoajD-_Gg6iH0BPAFYEEvl6jLBUgChI8A_B7aAB6h52zE99EGYyJ6yQg7Qael7DDG4yDxQ3RCAXMAAhv08dVt1LM3XaucitHBdi6k792ia7U5-njTrWV_2mBNzb4R3ZymNejqU-yS637YqrslVRur1-EReuB0KPbxXT9Dn9-8_nT1rr_-8Pb91cvr3gx4rL3mVAsBDiZtqcFbPhpMrATGwdDJOqetJGZggyCMS26lExMnA6ejnKjbMnqGXhx8l3U728m017MOasl-1vlWJe3Vv0r0X9RN-qb4QNkocDM4vzPI6etqS1WzL8aGoKNNa1GEUNIW1uCGPv8P3aU1xzbeLwpkY0SjLg_UfpElW3f8DGC1T0vt01J_0mo3nv09w5H_HU8Dnh6AXakpH3XCBeaEMfoTaV2bqg</recordid><startdate>20190521</startdate><enddate>20190521</enddate><creator>Paratore, Federico</creator><creator>Bacheva, Vesna</creator><creator>Kaigala, Govind V.</creator><creator>Bercovici, Moran</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4444-1938</orcidid></search><sort><creationdate>20190521</creationdate><title>Dynamic microscale flow patterning using electrical modulation of zeta potential</title><author>Paratore, Federico ; Bacheva, Vesna ; Kaigala, Govind V. ; Bercovici, Moran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-a63a771f1dae3c0b69c02e81461c3deffae82c545724686e8f7d6256398d3fb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuation</topic><topic>Dielectric breakdown</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Electroosmosis</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Modulation</topic><topic>Physical Sciences</topic><topic>Stagnation</topic><topic>Time response</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paratore, Federico</creatorcontrib><creatorcontrib>Bacheva, Vesna</creatorcontrib><creatorcontrib>Kaigala, Govind V.</creatorcontrib><creatorcontrib>Bercovici, Moran</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paratore, Federico</au><au>Bacheva, Vesna</au><au>Kaigala, Govind V.</au><au>Bercovici, Moran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic microscale flow patterning using electrical modulation of zeta potential</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-05-21</date><risdate>2019</risdate><volume>116</volume><issue>21</issue><spage>10258</spage><epage>10263</epage><pages>10258-10263</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The ability to move fluids at the microscale is at the core of many scientific and technological advancements. Despite its importance, microscale flow control remains highly limited by the use of discrete channels and mechanical valves, and relies on fixed geometries. Here we present an alternative mechanism that leverages localized field-effect electroosmosis to create dynamic flow patterns, allowing fluid manipulation without the use of physical walls. We control a set of gate electrodes embedded in the floor of a fluidic chamber using an ac voltage in sync with an external electric field, creating nonuniform electroosmotic flow distributions. These give rise to a pressure field that drives the flow throughout the chamber. We demonstrate a range of unique flow patterns that can be achieved, including regions of recirculating flow surrounded by quiescent fluid and volumes of complete stagnation within a moving fluid. We also demonstrate the interaction of multiple gate electrodes with an externally generated flow field, allowing spatial modulation of streamlines in real time. Furthermore, we provide a characterization of the system in terms of time response and dielectric breakdown, as well as engineering guidelines for its robust design and operation. We believe that the ability to create tailored microscale flow using solid-state actuation will open the door to entirely new on-chip functionalities.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31061121</pmid><doi>10.1073/pnas.1821269116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4444-1938</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-05, Vol.116 (21), p.10258-10263 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6534970 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Actuation Dielectric breakdown Electric fields Electrodes Electroosmosis Flow control Fluid flow Fluids Modulation Physical Sciences Stagnation Time response Zeta potential |
title | Dynamic microscale flow patterning using electrical modulation of zeta potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20microscale%20flow%20patterning%20using%20electrical%20modulation%20of%20zeta%20potential&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Paratore,%20Federico&rft.date=2019-05-21&rft.volume=116&rft.issue=21&rft.spage=10258&rft.epage=10263&rft.pages=10258-10263&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1821269116&rft_dat=%3Cjstor_pubme%3E26706244%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232184937&rft_id=info:pmid/31061121&rft_jstor_id=26706244&rfr_iscdi=true |