Quantifying Dynamic Regulation in Metabolic Pathways with Nonparametric Flux Inference
One of the central tasks in systems biology is to understand how cells regulate their metabolism. Hierarchical regulation analysis is a powerful tool to study this regulation at the metabolic, gene-expression, and signaling levels. It has been widely applied to study steady-state regulation, but ana...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2019-05, Vol.116 (10), p.2035-2046 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2046 |
---|---|
container_issue | 10 |
container_start_page | 2035 |
container_title | Biophysical journal |
container_volume | 116 |
creator | He, Fei Stumpf, Michael P.H. |
description | One of the central tasks in systems biology is to understand how cells regulate their metabolism. Hierarchical regulation analysis is a powerful tool to study this regulation at the metabolic, gene-expression, and signaling levels. It has been widely applied to study steady-state regulation, but analysis of the metabolic dynamics remains challenging because it is difficult to measure time-dependent metabolic flux. Here, we develop a nonparametric method that uses Gaussian processes to accurately infer the dynamics of a metabolic pathway based only on metabolite measurements; from this, we then go on to obtain a dynamical view of the hierarchical regulation processes invoked over time to control the activity in a pathway. Our approach allows us to use hierarchical regulation analysis in a dynamic setting but without the need for explicitly time-dependent flux measurements. |
doi_str_mv | 10.1016/j.bpj.2019.04.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6531928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349519303273</els_id><sourcerecordid>2231906684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-5ea82731e1f26fc6ec7c9b5a734213a0c392c3a7b2eeb1bdc3d47e126a6fb5ab3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCD-CCcuSSMLYTZyMkJFT6JZVPAVdr4kx2vUqcxXba7r_Hqy0VXHoayfPMO9Y8jL3iUHDg6u2maLebQgBvCigLgOYJW_CqFDnAUj1lCwBQuSyb6ogdh7AB4KIC_pwdSQ614gAL9uvbjC7afmfdKvu4czhak32n1TxgtJPLrMs-UcR2GtL7V4zrW9yF7NbGdfZ5clv0OFL0qXc-zHfZlevJkzP0gj3rcQj08r6esJ_nZz9OL_PrLxdXpx-uc1NWPOYV4VLUkhPvheqNIlObpq2wlqXgEsHIRhiJdSuIWt52RnZlTVwoVH3CWnnC3h9yt3M7UmfIRY-D3no7ot_pCa3-v-PsWq-mG60qyRuxTAFv7gP89HumEPVog6FhQEfTHLQQiQOllmVC-QE1fgrBU_-whoPe-9AbnXzovQ8NpU4-0szrf__3MPFXQALeHQBKV7qx5HUwdn_BznoyUXeTfST-D6AlnfI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231906684</pqid></control><display><type>article</type><title>Quantifying Dynamic Regulation in Metabolic Pathways with Nonparametric Flux Inference</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>He, Fei ; Stumpf, Michael P.H.</creator><creatorcontrib>He, Fei ; Stumpf, Michael P.H.</creatorcontrib><description>One of the central tasks in systems biology is to understand how cells regulate their metabolism. Hierarchical regulation analysis is a powerful tool to study this regulation at the metabolic, gene-expression, and signaling levels. It has been widely applied to study steady-state regulation, but analysis of the metabolic dynamics remains challenging because it is difficult to measure time-dependent metabolic flux. Here, we develop a nonparametric method that uses Gaussian processes to accurately infer the dynamics of a metabolic pathway based only on metabolite measurements; from this, we then go on to obtain a dynamical view of the hierarchical regulation processes invoked over time to control the activity in a pathway. Our approach allows us to use hierarchical regulation analysis in a dynamic setting but without the need for explicitly time-dependent flux measurements.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2019.04.009</identifier><identifier>PMID: 31076100</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>Biophysical journal, 2019-05, Vol.116 (10), p.2035-2046</ispartof><rights>2019</rights><rights>Copyright © 2019. Published by Elsevier Inc.</rights><rights>2019. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-5ea82731e1f26fc6ec7c9b5a734213a0c392c3a7b2eeb1bdc3d47e126a6fb5ab3</citedby><cites>FETCH-LOGICAL-c451t-5ea82731e1f26fc6ec7c9b5a734213a0c392c3a7b2eeb1bdc3d47e126a6fb5ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531928/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349519303273$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31076100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Stumpf, Michael P.H.</creatorcontrib><title>Quantifying Dynamic Regulation in Metabolic Pathways with Nonparametric Flux Inference</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>One of the central tasks in systems biology is to understand how cells regulate their metabolism. Hierarchical regulation analysis is a powerful tool to study this regulation at the metabolic, gene-expression, and signaling levels. It has been widely applied to study steady-state regulation, but analysis of the metabolic dynamics remains challenging because it is difficult to measure time-dependent metabolic flux. Here, we develop a nonparametric method that uses Gaussian processes to accurately infer the dynamics of a metabolic pathway based only on metabolite measurements; from this, we then go on to obtain a dynamical view of the hierarchical regulation processes invoked over time to control the activity in a pathway. Our approach allows us to use hierarchical regulation analysis in a dynamic setting but without the need for explicitly time-dependent flux measurements.</description><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EotvCD-CCcuSSMLYTZyMkJFT6JZVPAVdr4kx2vUqcxXba7r_Hqy0VXHoayfPMO9Y8jL3iUHDg6u2maLebQgBvCigLgOYJW_CqFDnAUj1lCwBQuSyb6ogdh7AB4KIC_pwdSQ614gAL9uvbjC7afmfdKvu4czhak32n1TxgtJPLrMs-UcR2GtL7V4zrW9yF7NbGdfZ5clv0OFL0qXc-zHfZlevJkzP0gj3rcQj08r6esJ_nZz9OL_PrLxdXpx-uc1NWPOYV4VLUkhPvheqNIlObpq2wlqXgEsHIRhiJdSuIWt52RnZlTVwoVH3CWnnC3h9yt3M7UmfIRY-D3no7ot_pCa3-v-PsWq-mG60qyRuxTAFv7gP89HumEPVog6FhQEfTHLQQiQOllmVC-QE1fgrBU_-whoPe-9AbnXzovQ8NpU4-0szrf__3MPFXQALeHQBKV7qx5HUwdn_BznoyUXeTfST-D6AlnfI</recordid><startdate>20190521</startdate><enddate>20190521</enddate><creator>He, Fei</creator><creator>Stumpf, Michael P.H.</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190521</creationdate><title>Quantifying Dynamic Regulation in Metabolic Pathways with Nonparametric Flux Inference</title><author>He, Fei ; Stumpf, Michael P.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-5ea82731e1f26fc6ec7c9b5a734213a0c392c3a7b2eeb1bdc3d47e126a6fb5ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Stumpf, Michael P.H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Fei</au><au>Stumpf, Michael P.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Dynamic Regulation in Metabolic Pathways with Nonparametric Flux Inference</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2019-05-21</date><risdate>2019</risdate><volume>116</volume><issue>10</issue><spage>2035</spage><epage>2046</epage><pages>2035-2046</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>One of the central tasks in systems biology is to understand how cells regulate their metabolism. Hierarchical regulation analysis is a powerful tool to study this regulation at the metabolic, gene-expression, and signaling levels. It has been widely applied to study steady-state regulation, but analysis of the metabolic dynamics remains challenging because it is difficult to measure time-dependent metabolic flux. Here, we develop a nonparametric method that uses Gaussian processes to accurately infer the dynamics of a metabolic pathway based only on metabolite measurements; from this, we then go on to obtain a dynamical view of the hierarchical regulation processes invoked over time to control the activity in a pathway. Our approach allows us to use hierarchical regulation analysis in a dynamic setting but without the need for explicitly time-dependent flux measurements.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31076100</pmid><doi>10.1016/j.bpj.2019.04.009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2019-05, Vol.116 (10), p.2035-2046 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6531928 |
source | Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | Quantifying Dynamic Regulation in Metabolic Pathways with Nonparametric Flux Inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Dynamic%20Regulation%20in%20Metabolic%20Pathways%20with%20Nonparametric%20Flux%20Inference&rft.jtitle=Biophysical%20journal&rft.au=He,%20Fei&rft.date=2019-05-21&rft.volume=116&rft.issue=10&rft.spage=2035&rft.epage=2046&rft.pages=2035-2046&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2019.04.009&rft_dat=%3Cproquest_pubme%3E2231906684%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231906684&rft_id=info:pmid/31076100&rft_els_id=S0006349519303273&rfr_iscdi=true |