Hsp104 and Potentiated Variants Can Operate as Distinct Nonprocessive Translocases

Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2019-05, Vol.116 (10), p.1856-1872
Hauptverfasser: Durie, Clarissa L., Lin, JiaBei, Scull, Nathaniel W., Mack, Korrie L., Jackrel, Meredith E., Sweeny, Elizabeth A., Castellano, Laura M., Shorter, James, Lucius, Aaron L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1872
container_issue 10
container_start_page 1856
container_title Biophysical journal
container_volume 116
creator Durie, Clarissa L.
Lin, JiaBei
Scull, Nathaniel W.
Mack, Korrie L.
Jackrel, Meredith E.
Sweeny, Elizabeth A.
Castellano, Laura M.
Shorter, James
Lucius, Aaron L.
description Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 disaggregates proteins is not completely understood but may require Hsp104 to partially or completely translocate polypeptides across its central channel. Here, we apply transient state, single turnover kinetics to investigate the ATP-dependent translocation of soluble polypeptides by Hsp104 and Hsp104A503S, a potentiated variant developed to resolve misfolded conformers implicated in neurodegenerative disease. We establish that Hsp104 and Hsp104A503S can operate as nonprocessive translocases for soluble substrates, indicating a “partial threading” model of translocation. Remarkably, Hsp104A503S exhibits altered coupling of ATP binding to translocation and decelerated dissociation from polypeptide substrate compared to Hsp104. This altered coupling and prolonged substrate interaction likely increases entropic pulling forces, thereby enabling more effective aggregate dissolution by Hsp104A503S.
doi_str_mv 10.1016/j.bpj.2019.03.035
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6531783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349519302942</els_id><sourcerecordid>2216289729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-ed1f9b1a8b2ca6de91b6006dd4f6c89bb221b0873988d06aecf5440705957ae63</originalsourceid><addsrcrecordid>eNp9UVFrFDEQDqLYs_oDfJE8-rLnJLvJJgiCXNUKpS1SfQ3ZZFZz7CVrsnfgvzflarEvhYGBmW---fg-Ql4zWDNg8t12PczbNQem19DWEk_IiomONwBKPiUrAJBN22lxQl6UsgVgXAB7Tk5aBrxXql-Rb-dlZtBRGz29TgvGJdgFPf1hc7BxKXRjI72aMdcptYWehbKE6BZ6meKck8NSwgHpTbaxTMnZguUleTbaqeCru35Kvn_-dLM5by6uvnzdfLxoXCfY0qBnox6YVQN3VnrUbJBVr_fdKJ3Sw8A5G0D1rVbKg7ToRtF10IPQorco21Py4cg774cdele1ZzuZOYedzX9MssE83MTwy_xMByNFy3rVVoK3dwQ5_d5jWcwuFIfTZCOmfTFVgORK91xXKDtCXU6lZBzv3zAwt1mYralZmNssDLS1RL1587---4t_5lfA-yMAq0uHgNkUFzA69CGjW4xP4RH6v-E-myE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216289729</pqid></control><display><type>article</type><title>Hsp104 and Potentiated Variants Can Operate as Distinct Nonprocessive Translocases</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Durie, Clarissa L. ; Lin, JiaBei ; Scull, Nathaniel W. ; Mack, Korrie L. ; Jackrel, Meredith E. ; Sweeny, Elizabeth A. ; Castellano, Laura M. ; Shorter, James ; Lucius, Aaron L.</creator><creatorcontrib>Durie, Clarissa L. ; Lin, JiaBei ; Scull, Nathaniel W. ; Mack, Korrie L. ; Jackrel, Meredith E. ; Sweeny, Elizabeth A. ; Castellano, Laura M. ; Shorter, James ; Lucius, Aaron L.</creatorcontrib><description>Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 disaggregates proteins is not completely understood but may require Hsp104 to partially or completely translocate polypeptides across its central channel. Here, we apply transient state, single turnover kinetics to investigate the ATP-dependent translocation of soluble polypeptides by Hsp104 and Hsp104A503S, a potentiated variant developed to resolve misfolded conformers implicated in neurodegenerative disease. We establish that Hsp104 and Hsp104A503S can operate as nonprocessive translocases for soluble substrates, indicating a “partial threading” model of translocation. Remarkably, Hsp104A503S exhibits altered coupling of ATP binding to translocation and decelerated dissociation from polypeptide substrate compared to Hsp104. This altered coupling and prolonged substrate interaction likely increases entropic pulling forces, thereby enabling more effective aggregate dissolution by Hsp104A503S.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2019.03.035</identifier><identifier>PMID: 31027887</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphate - metabolism ; Amino Acid Sequence ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Hydrolysis ; Kinetics ; Mutant Proteins - metabolism ; Peptides - metabolism ; Protein Aggregates ; Protein Binding ; Protein Conformation ; Protein Folding ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Structure-Activity Relationship</subject><ispartof>Biophysical journal, 2019-05, Vol.116 (10), p.1856-1872</ispartof><rights>2019 Biophysical Society</rights><rights>Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2019 Biophysical Society. 2019 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-ed1f9b1a8b2ca6de91b6006dd4f6c89bb221b0873988d06aecf5440705957ae63</citedby><cites>FETCH-LOGICAL-c451t-ed1f9b1a8b2ca6de91b6006dd4f6c89bb221b0873988d06aecf5440705957ae63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531783/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349519302942$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27903,27904,53769,53771,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31027887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Durie, Clarissa L.</creatorcontrib><creatorcontrib>Lin, JiaBei</creatorcontrib><creatorcontrib>Scull, Nathaniel W.</creatorcontrib><creatorcontrib>Mack, Korrie L.</creatorcontrib><creatorcontrib>Jackrel, Meredith E.</creatorcontrib><creatorcontrib>Sweeny, Elizabeth A.</creatorcontrib><creatorcontrib>Castellano, Laura M.</creatorcontrib><creatorcontrib>Shorter, James</creatorcontrib><creatorcontrib>Lucius, Aaron L.</creatorcontrib><title>Hsp104 and Potentiated Variants Can Operate as Distinct Nonprocessive Translocases</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 disaggregates proteins is not completely understood but may require Hsp104 to partially or completely translocate polypeptides across its central channel. Here, we apply transient state, single turnover kinetics to investigate the ATP-dependent translocation of soluble polypeptides by Hsp104 and Hsp104A503S, a potentiated variant developed to resolve misfolded conformers implicated in neurodegenerative disease. We establish that Hsp104 and Hsp104A503S can operate as nonprocessive translocases for soluble substrates, indicating a “partial threading” model of translocation. Remarkably, Hsp104A503S exhibits altered coupling of ATP binding to translocation and decelerated dissociation from polypeptide substrate compared to Hsp104. This altered coupling and prolonged substrate interaction likely increases entropic pulling forces, thereby enabling more effective aggregate dissolution by Hsp104A503S.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Peptides - metabolism</subject><subject>Protein Aggregates</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structure-Activity Relationship</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UVFrFDEQDqLYs_oDfJE8-rLnJLvJJgiCXNUKpS1SfQ3ZZFZz7CVrsnfgvzflarEvhYGBmW---fg-Ql4zWDNg8t12PczbNQem19DWEk_IiomONwBKPiUrAJBN22lxQl6UsgVgXAB7Tk5aBrxXql-Rb-dlZtBRGz29TgvGJdgFPf1hc7BxKXRjI72aMdcptYWehbKE6BZ6meKck8NSwgHpTbaxTMnZguUleTbaqeCru35Kvn_-dLM5by6uvnzdfLxoXCfY0qBnox6YVQN3VnrUbJBVr_fdKJ3Sw8A5G0D1rVbKg7ToRtF10IPQorco21Py4cg774cdele1ZzuZOYedzX9MssE83MTwy_xMByNFy3rVVoK3dwQ5_d5jWcwuFIfTZCOmfTFVgORK91xXKDtCXU6lZBzv3zAwt1mYralZmNssDLS1RL1587---4t_5lfA-yMAq0uHgNkUFzA69CGjW4xP4RH6v-E-myE</recordid><startdate>20190521</startdate><enddate>20190521</enddate><creator>Durie, Clarissa L.</creator><creator>Lin, JiaBei</creator><creator>Scull, Nathaniel W.</creator><creator>Mack, Korrie L.</creator><creator>Jackrel, Meredith E.</creator><creator>Sweeny, Elizabeth A.</creator><creator>Castellano, Laura M.</creator><creator>Shorter, James</creator><creator>Lucius, Aaron L.</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190521</creationdate><title>Hsp104 and Potentiated Variants Can Operate as Distinct Nonprocessive Translocases</title><author>Durie, Clarissa L. ; Lin, JiaBei ; Scull, Nathaniel W. ; Mack, Korrie L. ; Jackrel, Meredith E. ; Sweeny, Elizabeth A. ; Castellano, Laura M. ; Shorter, James ; Lucius, Aaron L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-ed1f9b1a8b2ca6de91b6006dd4f6c89bb221b0873988d06aecf5440705957ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Peptides - metabolism</topic><topic>Protein Aggregates</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durie, Clarissa L.</creatorcontrib><creatorcontrib>Lin, JiaBei</creatorcontrib><creatorcontrib>Scull, Nathaniel W.</creatorcontrib><creatorcontrib>Mack, Korrie L.</creatorcontrib><creatorcontrib>Jackrel, Meredith E.</creatorcontrib><creatorcontrib>Sweeny, Elizabeth A.</creatorcontrib><creatorcontrib>Castellano, Laura M.</creatorcontrib><creatorcontrib>Shorter, James</creatorcontrib><creatorcontrib>Lucius, Aaron L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durie, Clarissa L.</au><au>Lin, JiaBei</au><au>Scull, Nathaniel W.</au><au>Mack, Korrie L.</au><au>Jackrel, Meredith E.</au><au>Sweeny, Elizabeth A.</au><au>Castellano, Laura M.</au><au>Shorter, James</au><au>Lucius, Aaron L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hsp104 and Potentiated Variants Can Operate as Distinct Nonprocessive Translocases</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2019-05-21</date><risdate>2019</risdate><volume>116</volume><issue>10</issue><spage>1856</spage><epage>1872</epage><pages>1856-1872</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 disaggregates proteins is not completely understood but may require Hsp104 to partially or completely translocate polypeptides across its central channel. Here, we apply transient state, single turnover kinetics to investigate the ATP-dependent translocation of soluble polypeptides by Hsp104 and Hsp104A503S, a potentiated variant developed to resolve misfolded conformers implicated in neurodegenerative disease. We establish that Hsp104 and Hsp104A503S can operate as nonprocessive translocases for soluble substrates, indicating a “partial threading” model of translocation. Remarkably, Hsp104A503S exhibits altered coupling of ATP binding to translocation and decelerated dissociation from polypeptide substrate compared to Hsp104. This altered coupling and prolonged substrate interaction likely increases entropic pulling forces, thereby enabling more effective aggregate dissolution by Hsp104A503S.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31027887</pmid><doi>10.1016/j.bpj.2019.03.035</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2019-05, Vol.116 (10), p.1856-1872
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6531783
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adenosine Triphosphate - metabolism
Amino Acid Sequence
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Hydrolysis
Kinetics
Mutant Proteins - metabolism
Peptides - metabolism
Protein Aggregates
Protein Binding
Protein Conformation
Protein Folding
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Structure-Activity Relationship
title Hsp104 and Potentiated Variants Can Operate as Distinct Nonprocessive Translocases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hsp104%20and%20Potentiated%20Variants%20Can%20Operate%20as%20Distinct%20Nonprocessive%20Translocases&rft.jtitle=Biophysical%20journal&rft.au=Durie,%20Clarissa%20L.&rft.date=2019-05-21&rft.volume=116&rft.issue=10&rft.spage=1856&rft.epage=1872&rft.pages=1856-1872&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2019.03.035&rft_dat=%3Cproquest_pubme%3E2216289729%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216289729&rft_id=info:pmid/31027887&rft_els_id=S0006349519302942&rfr_iscdi=true