Hsp104 and Potentiated Variants Can Operate as Distinct Nonprocessive Translocases
Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 d...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2019-05, Vol.116 (10), p.1856-1872 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1872 |
---|---|
container_issue | 10 |
container_start_page | 1856 |
container_title | Biophysical journal |
container_volume | 116 |
creator | Durie, Clarissa L. Lin, JiaBei Scull, Nathaniel W. Mack, Korrie L. Jackrel, Meredith E. Sweeny, Elizabeth A. Castellano, Laura M. Shorter, James Lucius, Aaron L. |
description | Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 disaggregates proteins is not completely understood but may require Hsp104 to partially or completely translocate polypeptides across its central channel. Here, we apply transient state, single turnover kinetics to investigate the ATP-dependent translocation of soluble polypeptides by Hsp104 and Hsp104A503S, a potentiated variant developed to resolve misfolded conformers implicated in neurodegenerative disease. We establish that Hsp104 and Hsp104A503S can operate as nonprocessive translocases for soluble substrates, indicating a “partial threading” model of translocation. Remarkably, Hsp104A503S exhibits altered coupling of ATP binding to translocation and decelerated dissociation from polypeptide substrate compared to Hsp104. This altered coupling and prolonged substrate interaction likely increases entropic pulling forces, thereby enabling more effective aggregate dissolution by Hsp104A503S. |
doi_str_mv | 10.1016/j.bpj.2019.03.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6531783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349519302942</els_id><sourcerecordid>2216289729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-ed1f9b1a8b2ca6de91b6006dd4f6c89bb221b0873988d06aecf5440705957ae63</originalsourceid><addsrcrecordid>eNp9UVFrFDEQDqLYs_oDfJE8-rLnJLvJJgiCXNUKpS1SfQ3ZZFZz7CVrsnfgvzflarEvhYGBmW---fg-Ql4zWDNg8t12PczbNQem19DWEk_IiomONwBKPiUrAJBN22lxQl6UsgVgXAB7Tk5aBrxXql-Rb-dlZtBRGz29TgvGJdgFPf1hc7BxKXRjI72aMdcptYWehbKE6BZ6meKck8NSwgHpTbaxTMnZguUleTbaqeCru35Kvn_-dLM5by6uvnzdfLxoXCfY0qBnox6YVQN3VnrUbJBVr_fdKJ3Sw8A5G0D1rVbKg7ToRtF10IPQorco21Py4cg774cdele1ZzuZOYedzX9MssE83MTwy_xMByNFy3rVVoK3dwQ5_d5jWcwuFIfTZCOmfTFVgORK91xXKDtCXU6lZBzv3zAwt1mYralZmNssDLS1RL1587---4t_5lfA-yMAq0uHgNkUFzA69CGjW4xP4RH6v-E-myE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216289729</pqid></control><display><type>article</type><title>Hsp104 and Potentiated Variants Can Operate as Distinct Nonprocessive Translocases</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Durie, Clarissa L. ; Lin, JiaBei ; Scull, Nathaniel W. ; Mack, Korrie L. ; Jackrel, Meredith E. ; Sweeny, Elizabeth A. ; Castellano, Laura M. ; Shorter, James ; Lucius, Aaron L.</creator><creatorcontrib>Durie, Clarissa L. ; Lin, JiaBei ; Scull, Nathaniel W. ; Mack, Korrie L. ; Jackrel, Meredith E. ; Sweeny, Elizabeth A. ; Castellano, Laura M. ; Shorter, James ; Lucius, Aaron L.</creatorcontrib><description>Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 disaggregates proteins is not completely understood but may require Hsp104 to partially or completely translocate polypeptides across its central channel. Here, we apply transient state, single turnover kinetics to investigate the ATP-dependent translocation of soluble polypeptides by Hsp104 and Hsp104A503S, a potentiated variant developed to resolve misfolded conformers implicated in neurodegenerative disease. We establish that Hsp104 and Hsp104A503S can operate as nonprocessive translocases for soluble substrates, indicating a “partial threading” model of translocation. Remarkably, Hsp104A503S exhibits altered coupling of ATP binding to translocation and decelerated dissociation from polypeptide substrate compared to Hsp104. This altered coupling and prolonged substrate interaction likely increases entropic pulling forces, thereby enabling more effective aggregate dissolution by Hsp104A503S.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2019.03.035</identifier><identifier>PMID: 31027887</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphate - metabolism ; Amino Acid Sequence ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Hydrolysis ; Kinetics ; Mutant Proteins - metabolism ; Peptides - metabolism ; Protein Aggregates ; Protein Binding ; Protein Conformation ; Protein Folding ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Structure-Activity Relationship</subject><ispartof>Biophysical journal, 2019-05, Vol.116 (10), p.1856-1872</ispartof><rights>2019 Biophysical Society</rights><rights>Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2019 Biophysical Society. 2019 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-ed1f9b1a8b2ca6de91b6006dd4f6c89bb221b0873988d06aecf5440705957ae63</citedby><cites>FETCH-LOGICAL-c451t-ed1f9b1a8b2ca6de91b6006dd4f6c89bb221b0873988d06aecf5440705957ae63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531783/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349519302942$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27903,27904,53769,53771,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31027887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Durie, Clarissa L.</creatorcontrib><creatorcontrib>Lin, JiaBei</creatorcontrib><creatorcontrib>Scull, Nathaniel W.</creatorcontrib><creatorcontrib>Mack, Korrie L.</creatorcontrib><creatorcontrib>Jackrel, Meredith E.</creatorcontrib><creatorcontrib>Sweeny, Elizabeth A.</creatorcontrib><creatorcontrib>Castellano, Laura M.</creatorcontrib><creatorcontrib>Shorter, James</creatorcontrib><creatorcontrib>Lucius, Aaron L.</creatorcontrib><title>Hsp104 and Potentiated Variants Can Operate as Distinct Nonprocessive Translocases</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 disaggregates proteins is not completely understood but may require Hsp104 to partially or completely translocate polypeptides across its central channel. Here, we apply transient state, single turnover kinetics to investigate the ATP-dependent translocation of soluble polypeptides by Hsp104 and Hsp104A503S, a potentiated variant developed to resolve misfolded conformers implicated in neurodegenerative disease. We establish that Hsp104 and Hsp104A503S can operate as nonprocessive translocases for soluble substrates, indicating a “partial threading” model of translocation. Remarkably, Hsp104A503S exhibits altered coupling of ATP binding to translocation and decelerated dissociation from polypeptide substrate compared to Hsp104. This altered coupling and prolonged substrate interaction likely increases entropic pulling forces, thereby enabling more effective aggregate dissolution by Hsp104A503S.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Peptides - metabolism</subject><subject>Protein Aggregates</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structure-Activity Relationship</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UVFrFDEQDqLYs_oDfJE8-rLnJLvJJgiCXNUKpS1SfQ3ZZFZz7CVrsnfgvzflarEvhYGBmW---fg-Ql4zWDNg8t12PczbNQem19DWEk_IiomONwBKPiUrAJBN22lxQl6UsgVgXAB7Tk5aBrxXql-Rb-dlZtBRGz29TgvGJdgFPf1hc7BxKXRjI72aMdcptYWehbKE6BZ6meKck8NSwgHpTbaxTMnZguUleTbaqeCru35Kvn_-dLM5by6uvnzdfLxoXCfY0qBnox6YVQN3VnrUbJBVr_fdKJ3Sw8A5G0D1rVbKg7ToRtF10IPQorco21Py4cg774cdele1ZzuZOYedzX9MssE83MTwy_xMByNFy3rVVoK3dwQ5_d5jWcwuFIfTZCOmfTFVgORK91xXKDtCXU6lZBzv3zAwt1mYralZmNssDLS1RL1587---4t_5lfA-yMAq0uHgNkUFzA69CGjW4xP4RH6v-E-myE</recordid><startdate>20190521</startdate><enddate>20190521</enddate><creator>Durie, Clarissa L.</creator><creator>Lin, JiaBei</creator><creator>Scull, Nathaniel W.</creator><creator>Mack, Korrie L.</creator><creator>Jackrel, Meredith E.</creator><creator>Sweeny, Elizabeth A.</creator><creator>Castellano, Laura M.</creator><creator>Shorter, James</creator><creator>Lucius, Aaron L.</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190521</creationdate><title>Hsp104 and Potentiated Variants Can Operate as Distinct Nonprocessive Translocases</title><author>Durie, Clarissa L. ; Lin, JiaBei ; Scull, Nathaniel W. ; Mack, Korrie L. ; Jackrel, Meredith E. ; Sweeny, Elizabeth A. ; Castellano, Laura M. ; Shorter, James ; Lucius, Aaron L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-ed1f9b1a8b2ca6de91b6006dd4f6c89bb221b0873988d06aecf5440705957ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Peptides - metabolism</topic><topic>Protein Aggregates</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durie, Clarissa L.</creatorcontrib><creatorcontrib>Lin, JiaBei</creatorcontrib><creatorcontrib>Scull, Nathaniel W.</creatorcontrib><creatorcontrib>Mack, Korrie L.</creatorcontrib><creatorcontrib>Jackrel, Meredith E.</creatorcontrib><creatorcontrib>Sweeny, Elizabeth A.</creatorcontrib><creatorcontrib>Castellano, Laura M.</creatorcontrib><creatorcontrib>Shorter, James</creatorcontrib><creatorcontrib>Lucius, Aaron L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durie, Clarissa L.</au><au>Lin, JiaBei</au><au>Scull, Nathaniel W.</au><au>Mack, Korrie L.</au><au>Jackrel, Meredith E.</au><au>Sweeny, Elizabeth A.</au><au>Castellano, Laura M.</au><au>Shorter, James</au><au>Lucius, Aaron L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hsp104 and Potentiated Variants Can Operate as Distinct Nonprocessive Translocases</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2019-05-21</date><risdate>2019</risdate><volume>116</volume><issue>10</issue><spage>1856</spage><epage>1872</epage><pages>1856-1872</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 disaggregates proteins is not completely understood but may require Hsp104 to partially or completely translocate polypeptides across its central channel. Here, we apply transient state, single turnover kinetics to investigate the ATP-dependent translocation of soluble polypeptides by Hsp104 and Hsp104A503S, a potentiated variant developed to resolve misfolded conformers implicated in neurodegenerative disease. We establish that Hsp104 and Hsp104A503S can operate as nonprocessive translocases for soluble substrates, indicating a “partial threading” model of translocation. Remarkably, Hsp104A503S exhibits altered coupling of ATP binding to translocation and decelerated dissociation from polypeptide substrate compared to Hsp104. This altered coupling and prolonged substrate interaction likely increases entropic pulling forces, thereby enabling more effective aggregate dissolution by Hsp104A503S.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31027887</pmid><doi>10.1016/j.bpj.2019.03.035</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2019-05, Vol.116 (10), p.1856-1872 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6531783 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adenosine Triphosphate - metabolism Amino Acid Sequence Heat-Shock Proteins - genetics Heat-Shock Proteins - metabolism Hydrolysis Kinetics Mutant Proteins - metabolism Peptides - metabolism Protein Aggregates Protein Binding Protein Conformation Protein Folding Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Structure-Activity Relationship |
title | Hsp104 and Potentiated Variants Can Operate as Distinct Nonprocessive Translocases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hsp104%20and%20Potentiated%20Variants%20Can%20Operate%20as%20Distinct%20Nonprocessive%20Translocases&rft.jtitle=Biophysical%20journal&rft.au=Durie,%20Clarissa%20L.&rft.date=2019-05-21&rft.volume=116&rft.issue=10&rft.spage=1856&rft.epage=1872&rft.pages=1856-1872&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2019.03.035&rft_dat=%3Cproquest_pubme%3E2216289729%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216289729&rft_id=info:pmid/31027887&rft_els_id=S0006349519302942&rfr_iscdi=true |