Core Catalysis of the Reductive Glycine Pathway Demonstrated in Yeast

One-carbon (C1) compounds are attractive microbial feedstocks as they can be efficiently produced from widely available resources. Formate, in particular, represents a promising growth substrate, as it can be generated from electrochemical reduction of CO2 and fed to microorganisms in a soluble form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS synthetic biology 2019-05, Vol.8 (5), p.911-917
Hauptverfasser: Gonzalez de la Cruz, Jorge, Machens, Fabian, Messerschmidt, Katrin, Bar-Even, Arren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One-carbon (C1) compounds are attractive microbial feedstocks as they can be efficiently produced from widely available resources. Formate, in particular, represents a promising growth substrate, as it can be generated from electrochemical reduction of CO2 and fed to microorganisms in a soluble form. We previously identified the synthetic reductive glycine pathway as the most efficient route for aerobic growth on formate. We further demonstrated pathway activity in Escherichia coli after expression of both native and foreign genes. Here, we explore whether the reductive glycine pathway could be established in a model microorganism using only native enzymes. We used the yeast Saccharomyces cerevisiae as host and show that overexpression of only endogenous enzymes enables glycine biosynthesis from formate and CO2 in a strain that is otherwise auxotrophic for glycine. We find the pathway to be highly active in this host, where 0.125 mM formate is sufficient to support growth. Notably, the formate-dependent growth rate of the engineered S. cerevisiae strain remained roughly constant over a very wide range of formate concentrations, 1–500 mM, indicating both high affinity for formate use and high tolerance toward elevated concentration of this C1 feedstock. Our results, as well the availability of endogenous NAD-dependent formate dehydrogenase, indicate that yeast might be an especially suitable host for engineering growth on formate.
ISSN:2161-5063
2161-5063
DOI:10.1021/acssynbio.8b00464