Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy
Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligan...
Gespeichert in:
Veröffentlicht in: | Immunity (Cambridge, Mass.) Mass.), 2019-06, Vol.50 (6), p.1498-1512.e5 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1512.e5 |
---|---|
container_issue | 6 |
container_start_page | 1498 |
container_title | Immunity (Cambridge, Mass.) |
container_volume | 50 |
creator | Chow, Melvyn T. Ozga, Aleksandra J. Servis, Rachel L. Frederick, Dennie T. Lo, Jennifer A. Fisher, David E. Freeman, Gordon J. Boland, Genevieve M. Luster, Andrew D. |
description | Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligand CXCL9 were critical for a productive CD8+ T cell response in tumor-bearing mice treated with anti-PD-1 but were not required for the infiltration of CD8+ T cells into tumors. The anti-PD-1-induced anti-tumor response was facilitated by CXCL9 production from intratumoral CD103+ dendritic cells, suggesting that CXCR3 facilitates dendritic cell-T cell interactions within the tumor microenvironment. CXCR3 ligands in murine tumors and in plasma of melanoma patients were an indicator of clinical response to anti-PD-1, and their induction in non-responsive murine tumors promoted responsiveness to anti-PD-1. Our data suggest that the CXCR3 chemokine system is a biomarker for sensitivity to PD-1 blockade and that augmenting the intratumoral function of this chemokine system could improve clinical outcomes.
[Display omitted]
•Anti-PD-1 efficacy depends on intratumoral activity of the CXCR3 chemokine system•CD103+ dendritic-cell-derived CXCL9 and CXCR3 on CD8+ T cells are required•CXCR3 ligands are positive indicators of responsiveness to anti-PD-1 therapy•Inducing CXCR3 ligands in non-responsive tumors restores sensitivity to anti-PD-1
Chow et al. find the CXCR3 chemokine system is not required for CD8+ T cell migration into the tumor, but rather for the enhancement of the intratumoral CD8+ T cell response in the context of PD-1 blockade. The CXCR3 chemokine system might serve as a biomarker for sensitivity to PD-1 blockade and a target for improving clinical outcomes. |
doi_str_mv | 10.1016/j.immuni.2019.04.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6527362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761319301906</els_id><sourcerecordid>2242745959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-580f7f2217ba38b6ea7633fb967e486a3cdd230ba12b5260997e557311453c863</originalsourceid><addsrcrecordid>eNp9UU1v1DAUtBCIlsI_QMgS5wR_xU4uSKu0wEqVQKVI3CzHeWG9bOKt7ay0_x6nWwpcOPlJnpk3bwah15SUlFD5blu6cZwnVzJCm5KIklDyBJ1T0qhC0Jo8XWYlCiUpP0MvYtwSQkXVkOfojC8oLtg5gvWUgknz6IPZ4ZVN7uDSEfsBpw3g9nt7w3G7gdH_dBPgr8eYYMTriG_gbnYBejz4cA-9GgZnjb2nrqbkii-XBcW3Gwhmf3yJng1mF-HVw3uBvn24um0_FdefP67b1XVhq0qloqrJoAbGqOoMrzsJRknOh66RCkQtDbd9zzjpDGVdxSRpGgWZyGm-i9ta8gv0_qS7n7sRegvLcTu9D2404ai9cfrfn8lt9A9_0LJiikuWBd4-CAR_N0NMeuvnMGXPmjHBVM6vajJKnFA2-BgDDI8bKNFLOXqrT-XopRxNhM7lZNqbv909kn638cc-5IwODoKO1sFkoc9R26R77_6_4Rc-xKFq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242745959</pqid></control><display><type>article</type><title>Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chow, Melvyn T. ; Ozga, Aleksandra J. ; Servis, Rachel L. ; Frederick, Dennie T. ; Lo, Jennifer A. ; Fisher, David E. ; Freeman, Gordon J. ; Boland, Genevieve M. ; Luster, Andrew D.</creator><creatorcontrib>Chow, Melvyn T. ; Ozga, Aleksandra J. ; Servis, Rachel L. ; Frederick, Dennie T. ; Lo, Jennifer A. ; Fisher, David E. ; Freeman, Gordon J. ; Boland, Genevieve M. ; Luster, Andrew D.</creatorcontrib><description>Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligand CXCL9 were critical for a productive CD8+ T cell response in tumor-bearing mice treated with anti-PD-1 but were not required for the infiltration of CD8+ T cells into tumors. The anti-PD-1-induced anti-tumor response was facilitated by CXCL9 production from intratumoral CD103+ dendritic cells, suggesting that CXCR3 facilitates dendritic cell-T cell interactions within the tumor microenvironment. CXCR3 ligands in murine tumors and in plasma of melanoma patients were an indicator of clinical response to anti-PD-1, and their induction in non-responsive murine tumors promoted responsiveness to anti-PD-1. Our data suggest that the CXCR3 chemokine system is a biomarker for sensitivity to PD-1 blockade and that augmenting the intratumoral function of this chemokine system could improve clinical outcomes.
[Display omitted]
•Anti-PD-1 efficacy depends on intratumoral activity of the CXCR3 chemokine system•CD103+ dendritic-cell-derived CXCL9 and CXCR3 on CD8+ T cells are required•CXCR3 ligands are positive indicators of responsiveness to anti-PD-1 therapy•Inducing CXCR3 ligands in non-responsive tumors restores sensitivity to anti-PD-1
Chow et al. find the CXCR3 chemokine system is not required for CD8+ T cell migration into the tumor, but rather for the enhancement of the intratumoral CD8+ T cell response in the context of PD-1 blockade. The CXCR3 chemokine system might serve as a biomarker for sensitivity to PD-1 blockade and a target for improving clinical outcomes.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2019.04.010</identifier><identifier>PMID: 31097342</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antigens ; Antineoplastic Agents, Immunological - pharmacology ; Antineoplastic Agents, Immunological - therapeutic use ; Apoptosis ; Bearing ; Bioindicators ; Biomarkers ; Bone marrow ; Cancer therapies ; CD103 antigen ; CD8 antigen ; CD8+ T cells ; CD8-Positive T-Lymphocytes - drug effects ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Cell adhesion & migration ; Cell death ; Cell interactions ; chemokine ; Chemokines ; CXCL10 ; CXCL9 ; CXCR3 ; CXCR3 protein ; Cytokines ; Dendritic cells ; Disease Models, Animal ; Epigenesis, Genetic ; Humans ; immune checkpoint ; Immunomodulation - drug effects ; Immunotherapy ; Infiltration ; Ligands ; Lymphocyte Activation ; Lymphocytes ; Lymphocytes T ; Medical research ; Melanoma ; Metastases ; Mice ; Mice, Knockout ; Molecular Targeted Therapy ; Neoplasms - drug therapy ; Neoplasms - immunology ; Neoplasms - metabolism ; Neoplasms - pathology ; PD-1 ; PD-1 protein ; Programmed Cell Death 1 Receptor - antagonists & inhibitors ; Programmed Cell Death 1 Receptor - metabolism ; Receptors, CXCR3 - metabolism ; Scholarships & fellowships ; Statistical analysis ; T-Lymphocyte Subsets - drug effects ; T-Lymphocyte Subsets - immunology ; T-Lymphocyte Subsets - metabolism ; Tumor Microenvironment ; Tumor necrosis factor-TNF ; Tumors ; Xenograft Model Antitumor Assays</subject><ispartof>Immunity (Cambridge, Mass.), 2019-06, Vol.50 (6), p.1498-1512.e5</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-580f7f2217ba38b6ea7633fb967e486a3cdd230ba12b5260997e557311453c863</citedby><cites>FETCH-LOGICAL-c557t-580f7f2217ba38b6ea7633fb967e486a3cdd230ba12b5260997e557311453c863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1074761319301906$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31097342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chow, Melvyn T.</creatorcontrib><creatorcontrib>Ozga, Aleksandra J.</creatorcontrib><creatorcontrib>Servis, Rachel L.</creatorcontrib><creatorcontrib>Frederick, Dennie T.</creatorcontrib><creatorcontrib>Lo, Jennifer A.</creatorcontrib><creatorcontrib>Fisher, David E.</creatorcontrib><creatorcontrib>Freeman, Gordon J.</creatorcontrib><creatorcontrib>Boland, Genevieve M.</creatorcontrib><creatorcontrib>Luster, Andrew D.</creatorcontrib><title>Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligand CXCL9 were critical for a productive CD8+ T cell response in tumor-bearing mice treated with anti-PD-1 but were not required for the infiltration of CD8+ T cells into tumors. The anti-PD-1-induced anti-tumor response was facilitated by CXCL9 production from intratumoral CD103+ dendritic cells, suggesting that CXCR3 facilitates dendritic cell-T cell interactions within the tumor microenvironment. CXCR3 ligands in murine tumors and in plasma of melanoma patients were an indicator of clinical response to anti-PD-1, and their induction in non-responsive murine tumors promoted responsiveness to anti-PD-1. Our data suggest that the CXCR3 chemokine system is a biomarker for sensitivity to PD-1 blockade and that augmenting the intratumoral function of this chemokine system could improve clinical outcomes.
[Display omitted]
•Anti-PD-1 efficacy depends on intratumoral activity of the CXCR3 chemokine system•CD103+ dendritic-cell-derived CXCL9 and CXCR3 on CD8+ T cells are required•CXCR3 ligands are positive indicators of responsiveness to anti-PD-1 therapy•Inducing CXCR3 ligands in non-responsive tumors restores sensitivity to anti-PD-1
Chow et al. find the CXCR3 chemokine system is not required for CD8+ T cell migration into the tumor, but rather for the enhancement of the intratumoral CD8+ T cell response in the context of PD-1 blockade. The CXCR3 chemokine system might serve as a biomarker for sensitivity to PD-1 blockade and a target for improving clinical outcomes.</description><subject>Animals</subject><subject>Antigens</subject><subject>Antineoplastic Agents, Immunological - pharmacology</subject><subject>Antineoplastic Agents, Immunological - therapeutic use</subject><subject>Apoptosis</subject><subject>Bearing</subject><subject>Bioindicators</subject><subject>Biomarkers</subject><subject>Bone marrow</subject><subject>Cancer therapies</subject><subject>CD103 antigen</subject><subject>CD8 antigen</subject><subject>CD8+ T cells</subject><subject>CD8-Positive T-Lymphocytes - drug effects</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cell adhesion & migration</subject><subject>Cell death</subject><subject>Cell interactions</subject><subject>chemokine</subject><subject>Chemokines</subject><subject>CXCL10</subject><subject>CXCL9</subject><subject>CXCR3</subject><subject>CXCR3 protein</subject><subject>Cytokines</subject><subject>Dendritic cells</subject><subject>Disease Models, Animal</subject><subject>Epigenesis, Genetic</subject><subject>Humans</subject><subject>immune checkpoint</subject><subject>Immunomodulation - drug effects</subject><subject>Immunotherapy</subject><subject>Infiltration</subject><subject>Ligands</subject><subject>Lymphocyte Activation</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Medical research</subject><subject>Melanoma</subject><subject>Metastases</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Molecular Targeted Therapy</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>PD-1</subject><subject>PD-1 protein</subject><subject>Programmed Cell Death 1 Receptor - antagonists & inhibitors</subject><subject>Programmed Cell Death 1 Receptor - metabolism</subject><subject>Receptors, CXCR3 - metabolism</subject><subject>Scholarships & fellowships</subject><subject>Statistical analysis</subject><subject>T-Lymphocyte Subsets - drug effects</subject><subject>T-Lymphocyte Subsets - immunology</subject><subject>T-Lymphocyte Subsets - metabolism</subject><subject>Tumor Microenvironment</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAUtBCIlsI_QMgS5wR_xU4uSKu0wEqVQKVI3CzHeWG9bOKt7ay0_x6nWwpcOPlJnpk3bwah15SUlFD5blu6cZwnVzJCm5KIklDyBJ1T0qhC0Jo8XWYlCiUpP0MvYtwSQkXVkOfojC8oLtg5gvWUgknz6IPZ4ZVN7uDSEfsBpw3g9nt7w3G7gdH_dBPgr8eYYMTriG_gbnYBejz4cA-9GgZnjb2nrqbkii-XBcW3Gwhmf3yJng1mF-HVw3uBvn24um0_FdefP67b1XVhq0qloqrJoAbGqOoMrzsJRknOh66RCkQtDbd9zzjpDGVdxSRpGgWZyGm-i9ta8gv0_qS7n7sRegvLcTu9D2404ai9cfrfn8lt9A9_0LJiikuWBd4-CAR_N0NMeuvnMGXPmjHBVM6vajJKnFA2-BgDDI8bKNFLOXqrT-XopRxNhM7lZNqbv909kn638cc-5IwODoKO1sFkoc9R26R77_6_4Rc-xKFq</recordid><startdate>20190618</startdate><enddate>20190618</enddate><creator>Chow, Melvyn T.</creator><creator>Ozga, Aleksandra J.</creator><creator>Servis, Rachel L.</creator><creator>Frederick, Dennie T.</creator><creator>Lo, Jennifer A.</creator><creator>Fisher, David E.</creator><creator>Freeman, Gordon J.</creator><creator>Boland, Genevieve M.</creator><creator>Luster, Andrew D.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20190618</creationdate><title>Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy</title><author>Chow, Melvyn T. ; Ozga, Aleksandra J. ; Servis, Rachel L. ; Frederick, Dennie T. ; Lo, Jennifer A. ; Fisher, David E. ; Freeman, Gordon J. ; Boland, Genevieve M. ; Luster, Andrew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-580f7f2217ba38b6ea7633fb967e486a3cdd230ba12b5260997e557311453c863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antigens</topic><topic>Antineoplastic Agents, Immunological - pharmacology</topic><topic>Antineoplastic Agents, Immunological - therapeutic use</topic><topic>Apoptosis</topic><topic>Bearing</topic><topic>Bioindicators</topic><topic>Biomarkers</topic><topic>Bone marrow</topic><topic>Cancer therapies</topic><topic>CD103 antigen</topic><topic>CD8 antigen</topic><topic>CD8+ T cells</topic><topic>CD8-Positive T-Lymphocytes - drug effects</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cell adhesion & migration</topic><topic>Cell death</topic><topic>Cell interactions</topic><topic>chemokine</topic><topic>Chemokines</topic><topic>CXCL10</topic><topic>CXCL9</topic><topic>CXCR3</topic><topic>CXCR3 protein</topic><topic>Cytokines</topic><topic>Dendritic cells</topic><topic>Disease Models, Animal</topic><topic>Epigenesis, Genetic</topic><topic>Humans</topic><topic>immune checkpoint</topic><topic>Immunomodulation - drug effects</topic><topic>Immunotherapy</topic><topic>Infiltration</topic><topic>Ligands</topic><topic>Lymphocyte Activation</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Medical research</topic><topic>Melanoma</topic><topic>Metastases</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Molecular Targeted Therapy</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>PD-1</topic><topic>PD-1 protein</topic><topic>Programmed Cell Death 1 Receptor - antagonists & inhibitors</topic><topic>Programmed Cell Death 1 Receptor - metabolism</topic><topic>Receptors, CXCR3 - metabolism</topic><topic>Scholarships & fellowships</topic><topic>Statistical analysis</topic><topic>T-Lymphocyte Subsets - drug effects</topic><topic>T-Lymphocyte Subsets - immunology</topic><topic>T-Lymphocyte Subsets - metabolism</topic><topic>Tumor Microenvironment</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chow, Melvyn T.</creatorcontrib><creatorcontrib>Ozga, Aleksandra J.</creatorcontrib><creatorcontrib>Servis, Rachel L.</creatorcontrib><creatorcontrib>Frederick, Dennie T.</creatorcontrib><creatorcontrib>Lo, Jennifer A.</creatorcontrib><creatorcontrib>Fisher, David E.</creatorcontrib><creatorcontrib>Freeman, Gordon J.</creatorcontrib><creatorcontrib>Boland, Genevieve M.</creatorcontrib><creatorcontrib>Luster, Andrew D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chow, Melvyn T.</au><au>Ozga, Aleksandra J.</au><au>Servis, Rachel L.</au><au>Frederick, Dennie T.</au><au>Lo, Jennifer A.</au><au>Fisher, David E.</au><au>Freeman, Gordon J.</au><au>Boland, Genevieve M.</au><au>Luster, Andrew D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2019-06-18</date><risdate>2019</risdate><volume>50</volume><issue>6</issue><spage>1498</spage><epage>1512.e5</epage><pages>1498-1512.e5</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligand CXCL9 were critical for a productive CD8+ T cell response in tumor-bearing mice treated with anti-PD-1 but were not required for the infiltration of CD8+ T cells into tumors. The anti-PD-1-induced anti-tumor response was facilitated by CXCL9 production from intratumoral CD103+ dendritic cells, suggesting that CXCR3 facilitates dendritic cell-T cell interactions within the tumor microenvironment. CXCR3 ligands in murine tumors and in plasma of melanoma patients were an indicator of clinical response to anti-PD-1, and their induction in non-responsive murine tumors promoted responsiveness to anti-PD-1. Our data suggest that the CXCR3 chemokine system is a biomarker for sensitivity to PD-1 blockade and that augmenting the intratumoral function of this chemokine system could improve clinical outcomes.
[Display omitted]
•Anti-PD-1 efficacy depends on intratumoral activity of the CXCR3 chemokine system•CD103+ dendritic-cell-derived CXCL9 and CXCR3 on CD8+ T cells are required•CXCR3 ligands are positive indicators of responsiveness to anti-PD-1 therapy•Inducing CXCR3 ligands in non-responsive tumors restores sensitivity to anti-PD-1
Chow et al. find the CXCR3 chemokine system is not required for CD8+ T cell migration into the tumor, but rather for the enhancement of the intratumoral CD8+ T cell response in the context of PD-1 blockade. The CXCR3 chemokine system might serve as a biomarker for sensitivity to PD-1 blockade and a target for improving clinical outcomes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31097342</pmid><doi>10.1016/j.immuni.2019.04.010</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-7613 |
ispartof | Immunity (Cambridge, Mass.), 2019-06, Vol.50 (6), p.1498-1512.e5 |
issn | 1074-7613 1097-4180 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6527362 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Antigens Antineoplastic Agents, Immunological - pharmacology Antineoplastic Agents, Immunological - therapeutic use Apoptosis Bearing Bioindicators Biomarkers Bone marrow Cancer therapies CD103 antigen CD8 antigen CD8+ T cells CD8-Positive T-Lymphocytes - drug effects CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - metabolism Cell adhesion & migration Cell death Cell interactions chemokine Chemokines CXCL10 CXCL9 CXCR3 CXCR3 protein Cytokines Dendritic cells Disease Models, Animal Epigenesis, Genetic Humans immune checkpoint Immunomodulation - drug effects Immunotherapy Infiltration Ligands Lymphocyte Activation Lymphocytes Lymphocytes T Medical research Melanoma Metastases Mice Mice, Knockout Molecular Targeted Therapy Neoplasms - drug therapy Neoplasms - immunology Neoplasms - metabolism Neoplasms - pathology PD-1 PD-1 protein Programmed Cell Death 1 Receptor - antagonists & inhibitors Programmed Cell Death 1 Receptor - metabolism Receptors, CXCR3 - metabolism Scholarships & fellowships Statistical analysis T-Lymphocyte Subsets - drug effects T-Lymphocyte Subsets - immunology T-Lymphocyte Subsets - metabolism Tumor Microenvironment Tumor necrosis factor-TNF Tumors Xenograft Model Antitumor Assays |
title | Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intratumoral%20Activity%20of%20the%20CXCR3%20Chemokine%20System%20Is%20Required%20for%20the%20Efficacy%20of%20Anti-PD-1%20Therapy&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Chow,%20Melvyn%20T.&rft.date=2019-06-18&rft.volume=50&rft.issue=6&rft.spage=1498&rft.epage=1512.e5&rft.pages=1498-1512.e5&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2019.04.010&rft_dat=%3Cproquest_pubme%3E2242745959%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242745959&rft_id=info:pmid/31097342&rft_els_id=S1074761319301906&rfr_iscdi=true |