Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy

Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunity (Cambridge, Mass.) Mass.), 2019-06, Vol.50 (6), p.1498-1512.e5
Hauptverfasser: Chow, Melvyn T., Ozga, Aleksandra J., Servis, Rachel L., Frederick, Dennie T., Lo, Jennifer A., Fisher, David E., Freeman, Gordon J., Boland, Genevieve M., Luster, Andrew D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1512.e5
container_issue 6
container_start_page 1498
container_title Immunity (Cambridge, Mass.)
container_volume 50
creator Chow, Melvyn T.
Ozga, Aleksandra J.
Servis, Rachel L.
Frederick, Dennie T.
Lo, Jennifer A.
Fisher, David E.
Freeman, Gordon J.
Boland, Genevieve M.
Luster, Andrew D.
description Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligand CXCL9 were critical for a productive CD8+ T cell response in tumor-bearing mice treated with anti-PD-1 but were not required for the infiltration of CD8+ T cells into tumors. The anti-PD-1-induced anti-tumor response was facilitated by CXCL9 production from intratumoral CD103+ dendritic cells, suggesting that CXCR3 facilitates dendritic cell-T cell interactions within the tumor microenvironment. CXCR3 ligands in murine tumors and in plasma of melanoma patients were an indicator of clinical response to anti-PD-1, and their induction in non-responsive murine tumors promoted responsiveness to anti-PD-1. Our data suggest that the CXCR3 chemokine system is a biomarker for sensitivity to PD-1 blockade and that augmenting the intratumoral function of this chemokine system could improve clinical outcomes. [Display omitted] •Anti-PD-1 efficacy depends on intratumoral activity of the CXCR3 chemokine system•CD103+ dendritic-cell-derived CXCL9 and CXCR3 on CD8+ T cells are required•CXCR3 ligands are positive indicators of responsiveness to anti-PD-1 therapy•Inducing CXCR3 ligands in non-responsive tumors restores sensitivity to anti-PD-1 Chow et al. find the CXCR3 chemokine system is not required for CD8+ T cell migration into the tumor, but rather for the enhancement of the intratumoral CD8+ T cell response in the context of PD-1 blockade. The CXCR3 chemokine system might serve as a biomarker for sensitivity to PD-1 blockade and a target for improving clinical outcomes.
doi_str_mv 10.1016/j.immuni.2019.04.010
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6527362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761319301906</els_id><sourcerecordid>2242745959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-580f7f2217ba38b6ea7633fb967e486a3cdd230ba12b5260997e557311453c863</originalsourceid><addsrcrecordid>eNp9UU1v1DAUtBCIlsI_QMgS5wR_xU4uSKu0wEqVQKVI3CzHeWG9bOKt7ay0_x6nWwpcOPlJnpk3bwah15SUlFD5blu6cZwnVzJCm5KIklDyBJ1T0qhC0Jo8XWYlCiUpP0MvYtwSQkXVkOfojC8oLtg5gvWUgknz6IPZ4ZVN7uDSEfsBpw3g9nt7w3G7gdH_dBPgr8eYYMTriG_gbnYBejz4cA-9GgZnjb2nrqbkii-XBcW3Gwhmf3yJng1mF-HVw3uBvn24um0_FdefP67b1XVhq0qloqrJoAbGqOoMrzsJRknOh66RCkQtDbd9zzjpDGVdxSRpGgWZyGm-i9ta8gv0_qS7n7sRegvLcTu9D2404ai9cfrfn8lt9A9_0LJiikuWBd4-CAR_N0NMeuvnMGXPmjHBVM6vajJKnFA2-BgDDI8bKNFLOXqrT-XopRxNhM7lZNqbv909kn638cc-5IwODoKO1sFkoc9R26R77_6_4Rc-xKFq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242745959</pqid></control><display><type>article</type><title>Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chow, Melvyn T. ; Ozga, Aleksandra J. ; Servis, Rachel L. ; Frederick, Dennie T. ; Lo, Jennifer A. ; Fisher, David E. ; Freeman, Gordon J. ; Boland, Genevieve M. ; Luster, Andrew D.</creator><creatorcontrib>Chow, Melvyn T. ; Ozga, Aleksandra J. ; Servis, Rachel L. ; Frederick, Dennie T. ; Lo, Jennifer A. ; Fisher, David E. ; Freeman, Gordon J. ; Boland, Genevieve M. ; Luster, Andrew D.</creatorcontrib><description>Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligand CXCL9 were critical for a productive CD8+ T cell response in tumor-bearing mice treated with anti-PD-1 but were not required for the infiltration of CD8+ T cells into tumors. The anti-PD-1-induced anti-tumor response was facilitated by CXCL9 production from intratumoral CD103+ dendritic cells, suggesting that CXCR3 facilitates dendritic cell-T cell interactions within the tumor microenvironment. CXCR3 ligands in murine tumors and in plasma of melanoma patients were an indicator of clinical response to anti-PD-1, and their induction in non-responsive murine tumors promoted responsiveness to anti-PD-1. Our data suggest that the CXCR3 chemokine system is a biomarker for sensitivity to PD-1 blockade and that augmenting the intratumoral function of this chemokine system could improve clinical outcomes. [Display omitted] •Anti-PD-1 efficacy depends on intratumoral activity of the CXCR3 chemokine system•CD103+ dendritic-cell-derived CXCL9 and CXCR3 on CD8+ T cells are required•CXCR3 ligands are positive indicators of responsiveness to anti-PD-1 therapy•Inducing CXCR3 ligands in non-responsive tumors restores sensitivity to anti-PD-1 Chow et al. find the CXCR3 chemokine system is not required for CD8+ T cell migration into the tumor, but rather for the enhancement of the intratumoral CD8+ T cell response in the context of PD-1 blockade. The CXCR3 chemokine system might serve as a biomarker for sensitivity to PD-1 blockade and a target for improving clinical outcomes.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2019.04.010</identifier><identifier>PMID: 31097342</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antigens ; Antineoplastic Agents, Immunological - pharmacology ; Antineoplastic Agents, Immunological - therapeutic use ; Apoptosis ; Bearing ; Bioindicators ; Biomarkers ; Bone marrow ; Cancer therapies ; CD103 antigen ; CD8 antigen ; CD8+ T cells ; CD8-Positive T-Lymphocytes - drug effects ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Cell adhesion &amp; migration ; Cell death ; Cell interactions ; chemokine ; Chemokines ; CXCL10 ; CXCL9 ; CXCR3 ; CXCR3 protein ; Cytokines ; Dendritic cells ; Disease Models, Animal ; Epigenesis, Genetic ; Humans ; immune checkpoint ; Immunomodulation - drug effects ; Immunotherapy ; Infiltration ; Ligands ; Lymphocyte Activation ; Lymphocytes ; Lymphocytes T ; Medical research ; Melanoma ; Metastases ; Mice ; Mice, Knockout ; Molecular Targeted Therapy ; Neoplasms - drug therapy ; Neoplasms - immunology ; Neoplasms - metabolism ; Neoplasms - pathology ; PD-1 ; PD-1 protein ; Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors ; Programmed Cell Death 1 Receptor - metabolism ; Receptors, CXCR3 - metabolism ; Scholarships &amp; fellowships ; Statistical analysis ; T-Lymphocyte Subsets - drug effects ; T-Lymphocyte Subsets - immunology ; T-Lymphocyte Subsets - metabolism ; Tumor Microenvironment ; Tumor necrosis factor-TNF ; Tumors ; Xenograft Model Antitumor Assays</subject><ispartof>Immunity (Cambridge, Mass.), 2019-06, Vol.50 (6), p.1498-1512.e5</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-580f7f2217ba38b6ea7633fb967e486a3cdd230ba12b5260997e557311453c863</citedby><cites>FETCH-LOGICAL-c557t-580f7f2217ba38b6ea7633fb967e486a3cdd230ba12b5260997e557311453c863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1074761319301906$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31097342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chow, Melvyn T.</creatorcontrib><creatorcontrib>Ozga, Aleksandra J.</creatorcontrib><creatorcontrib>Servis, Rachel L.</creatorcontrib><creatorcontrib>Frederick, Dennie T.</creatorcontrib><creatorcontrib>Lo, Jennifer A.</creatorcontrib><creatorcontrib>Fisher, David E.</creatorcontrib><creatorcontrib>Freeman, Gordon J.</creatorcontrib><creatorcontrib>Boland, Genevieve M.</creatorcontrib><creatorcontrib>Luster, Andrew D.</creatorcontrib><title>Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligand CXCL9 were critical for a productive CD8+ T cell response in tumor-bearing mice treated with anti-PD-1 but were not required for the infiltration of CD8+ T cells into tumors. The anti-PD-1-induced anti-tumor response was facilitated by CXCL9 production from intratumoral CD103+ dendritic cells, suggesting that CXCR3 facilitates dendritic cell-T cell interactions within the tumor microenvironment. CXCR3 ligands in murine tumors and in plasma of melanoma patients were an indicator of clinical response to anti-PD-1, and their induction in non-responsive murine tumors promoted responsiveness to anti-PD-1. Our data suggest that the CXCR3 chemokine system is a biomarker for sensitivity to PD-1 blockade and that augmenting the intratumoral function of this chemokine system could improve clinical outcomes. [Display omitted] •Anti-PD-1 efficacy depends on intratumoral activity of the CXCR3 chemokine system•CD103+ dendritic-cell-derived CXCL9 and CXCR3 on CD8+ T cells are required•CXCR3 ligands are positive indicators of responsiveness to anti-PD-1 therapy•Inducing CXCR3 ligands in non-responsive tumors restores sensitivity to anti-PD-1 Chow et al. find the CXCR3 chemokine system is not required for CD8+ T cell migration into the tumor, but rather for the enhancement of the intratumoral CD8+ T cell response in the context of PD-1 blockade. The CXCR3 chemokine system might serve as a biomarker for sensitivity to PD-1 blockade and a target for improving clinical outcomes.</description><subject>Animals</subject><subject>Antigens</subject><subject>Antineoplastic Agents, Immunological - pharmacology</subject><subject>Antineoplastic Agents, Immunological - therapeutic use</subject><subject>Apoptosis</subject><subject>Bearing</subject><subject>Bioindicators</subject><subject>Biomarkers</subject><subject>Bone marrow</subject><subject>Cancer therapies</subject><subject>CD103 antigen</subject><subject>CD8 antigen</subject><subject>CD8+ T cells</subject><subject>CD8-Positive T-Lymphocytes - drug effects</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell death</subject><subject>Cell interactions</subject><subject>chemokine</subject><subject>Chemokines</subject><subject>CXCL10</subject><subject>CXCL9</subject><subject>CXCR3</subject><subject>CXCR3 protein</subject><subject>Cytokines</subject><subject>Dendritic cells</subject><subject>Disease Models, Animal</subject><subject>Epigenesis, Genetic</subject><subject>Humans</subject><subject>immune checkpoint</subject><subject>Immunomodulation - drug effects</subject><subject>Immunotherapy</subject><subject>Infiltration</subject><subject>Ligands</subject><subject>Lymphocyte Activation</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Medical research</subject><subject>Melanoma</subject><subject>Metastases</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Molecular Targeted Therapy</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>PD-1</subject><subject>PD-1 protein</subject><subject>Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors</subject><subject>Programmed Cell Death 1 Receptor - metabolism</subject><subject>Receptors, CXCR3 - metabolism</subject><subject>Scholarships &amp; fellowships</subject><subject>Statistical analysis</subject><subject>T-Lymphocyte Subsets - drug effects</subject><subject>T-Lymphocyte Subsets - immunology</subject><subject>T-Lymphocyte Subsets - metabolism</subject><subject>Tumor Microenvironment</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAUtBCIlsI_QMgS5wR_xU4uSKu0wEqVQKVI3CzHeWG9bOKt7ay0_x6nWwpcOPlJnpk3bwah15SUlFD5blu6cZwnVzJCm5KIklDyBJ1T0qhC0Jo8XWYlCiUpP0MvYtwSQkXVkOfojC8oLtg5gvWUgknz6IPZ4ZVN7uDSEfsBpw3g9nt7w3G7gdH_dBPgr8eYYMTriG_gbnYBejz4cA-9GgZnjb2nrqbkii-XBcW3Gwhmf3yJng1mF-HVw3uBvn24um0_FdefP67b1XVhq0qloqrJoAbGqOoMrzsJRknOh66RCkQtDbd9zzjpDGVdxSRpGgWZyGm-i9ta8gv0_qS7n7sRegvLcTu9D2404ai9cfrfn8lt9A9_0LJiikuWBd4-CAR_N0NMeuvnMGXPmjHBVM6vajJKnFA2-BgDDI8bKNFLOXqrT-XopRxNhM7lZNqbv909kn638cc-5IwODoKO1sFkoc9R26R77_6_4Rc-xKFq</recordid><startdate>20190618</startdate><enddate>20190618</enddate><creator>Chow, Melvyn T.</creator><creator>Ozga, Aleksandra J.</creator><creator>Servis, Rachel L.</creator><creator>Frederick, Dennie T.</creator><creator>Lo, Jennifer A.</creator><creator>Fisher, David E.</creator><creator>Freeman, Gordon J.</creator><creator>Boland, Genevieve M.</creator><creator>Luster, Andrew D.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20190618</creationdate><title>Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy</title><author>Chow, Melvyn T. ; Ozga, Aleksandra J. ; Servis, Rachel L. ; Frederick, Dennie T. ; Lo, Jennifer A. ; Fisher, David E. ; Freeman, Gordon J. ; Boland, Genevieve M. ; Luster, Andrew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-580f7f2217ba38b6ea7633fb967e486a3cdd230ba12b5260997e557311453c863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antigens</topic><topic>Antineoplastic Agents, Immunological - pharmacology</topic><topic>Antineoplastic Agents, Immunological - therapeutic use</topic><topic>Apoptosis</topic><topic>Bearing</topic><topic>Bioindicators</topic><topic>Biomarkers</topic><topic>Bone marrow</topic><topic>Cancer therapies</topic><topic>CD103 antigen</topic><topic>CD8 antigen</topic><topic>CD8+ T cells</topic><topic>CD8-Positive T-Lymphocytes - drug effects</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell death</topic><topic>Cell interactions</topic><topic>chemokine</topic><topic>Chemokines</topic><topic>CXCL10</topic><topic>CXCL9</topic><topic>CXCR3</topic><topic>CXCR3 protein</topic><topic>Cytokines</topic><topic>Dendritic cells</topic><topic>Disease Models, Animal</topic><topic>Epigenesis, Genetic</topic><topic>Humans</topic><topic>immune checkpoint</topic><topic>Immunomodulation - drug effects</topic><topic>Immunotherapy</topic><topic>Infiltration</topic><topic>Ligands</topic><topic>Lymphocyte Activation</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Medical research</topic><topic>Melanoma</topic><topic>Metastases</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Molecular Targeted Therapy</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>PD-1</topic><topic>PD-1 protein</topic><topic>Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors</topic><topic>Programmed Cell Death 1 Receptor - metabolism</topic><topic>Receptors, CXCR3 - metabolism</topic><topic>Scholarships &amp; fellowships</topic><topic>Statistical analysis</topic><topic>T-Lymphocyte Subsets - drug effects</topic><topic>T-Lymphocyte Subsets - immunology</topic><topic>T-Lymphocyte Subsets - metabolism</topic><topic>Tumor Microenvironment</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chow, Melvyn T.</creatorcontrib><creatorcontrib>Ozga, Aleksandra J.</creatorcontrib><creatorcontrib>Servis, Rachel L.</creatorcontrib><creatorcontrib>Frederick, Dennie T.</creatorcontrib><creatorcontrib>Lo, Jennifer A.</creatorcontrib><creatorcontrib>Fisher, David E.</creatorcontrib><creatorcontrib>Freeman, Gordon J.</creatorcontrib><creatorcontrib>Boland, Genevieve M.</creatorcontrib><creatorcontrib>Luster, Andrew D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chow, Melvyn T.</au><au>Ozga, Aleksandra J.</au><au>Servis, Rachel L.</au><au>Frederick, Dennie T.</au><au>Lo, Jennifer A.</au><au>Fisher, David E.</au><au>Freeman, Gordon J.</au><au>Boland, Genevieve M.</au><au>Luster, Andrew D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2019-06-18</date><risdate>2019</risdate><volume>50</volume><issue>6</issue><spage>1498</spage><epage>1512.e5</epage><pages>1498-1512.e5</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligand CXCL9 were critical for a productive CD8+ T cell response in tumor-bearing mice treated with anti-PD-1 but were not required for the infiltration of CD8+ T cells into tumors. The anti-PD-1-induced anti-tumor response was facilitated by CXCL9 production from intratumoral CD103+ dendritic cells, suggesting that CXCR3 facilitates dendritic cell-T cell interactions within the tumor microenvironment. CXCR3 ligands in murine tumors and in plasma of melanoma patients were an indicator of clinical response to anti-PD-1, and their induction in non-responsive murine tumors promoted responsiveness to anti-PD-1. Our data suggest that the CXCR3 chemokine system is a biomarker for sensitivity to PD-1 blockade and that augmenting the intratumoral function of this chemokine system could improve clinical outcomes. [Display omitted] •Anti-PD-1 efficacy depends on intratumoral activity of the CXCR3 chemokine system•CD103+ dendritic-cell-derived CXCL9 and CXCR3 on CD8+ T cells are required•CXCR3 ligands are positive indicators of responsiveness to anti-PD-1 therapy•Inducing CXCR3 ligands in non-responsive tumors restores sensitivity to anti-PD-1 Chow et al. find the CXCR3 chemokine system is not required for CD8+ T cell migration into the tumor, but rather for the enhancement of the intratumoral CD8+ T cell response in the context of PD-1 blockade. The CXCR3 chemokine system might serve as a biomarker for sensitivity to PD-1 blockade and a target for improving clinical outcomes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31097342</pmid><doi>10.1016/j.immuni.2019.04.010</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1074-7613
ispartof Immunity (Cambridge, Mass.), 2019-06, Vol.50 (6), p.1498-1512.e5
issn 1074-7613
1097-4180
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6527362
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals
subjects Animals
Antigens
Antineoplastic Agents, Immunological - pharmacology
Antineoplastic Agents, Immunological - therapeutic use
Apoptosis
Bearing
Bioindicators
Biomarkers
Bone marrow
Cancer therapies
CD103 antigen
CD8 antigen
CD8+ T cells
CD8-Positive T-Lymphocytes - drug effects
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - metabolism
Cell adhesion & migration
Cell death
Cell interactions
chemokine
Chemokines
CXCL10
CXCL9
CXCR3
CXCR3 protein
Cytokines
Dendritic cells
Disease Models, Animal
Epigenesis, Genetic
Humans
immune checkpoint
Immunomodulation - drug effects
Immunotherapy
Infiltration
Ligands
Lymphocyte Activation
Lymphocytes
Lymphocytes T
Medical research
Melanoma
Metastases
Mice
Mice, Knockout
Molecular Targeted Therapy
Neoplasms - drug therapy
Neoplasms - immunology
Neoplasms - metabolism
Neoplasms - pathology
PD-1
PD-1 protein
Programmed Cell Death 1 Receptor - antagonists & inhibitors
Programmed Cell Death 1 Receptor - metabolism
Receptors, CXCR3 - metabolism
Scholarships & fellowships
Statistical analysis
T-Lymphocyte Subsets - drug effects
T-Lymphocyte Subsets - immunology
T-Lymphocyte Subsets - metabolism
Tumor Microenvironment
Tumor necrosis factor-TNF
Tumors
Xenograft Model Antitumor Assays
title Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intratumoral%20Activity%20of%20the%20CXCR3%20Chemokine%20System%20Is%20Required%20for%20the%20Efficacy%20of%20Anti-PD-1%20Therapy&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Chow,%20Melvyn%20T.&rft.date=2019-06-18&rft.volume=50&rft.issue=6&rft.spage=1498&rft.epage=1512.e5&rft.pages=1498-1512.e5&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2019.04.010&rft_dat=%3Cproquest_pubme%3E2242745959%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242745959&rft_id=info:pmid/31097342&rft_els_id=S1074761319301906&rfr_iscdi=true