Imaging local brain activity of multiple freely moving mice sharing the same environment

Electrophysiological field potential dynamics have been widely used to investigate brain functions and related psychiatric disorders. Considering recent demand for its applicability to freely moving subjects, especially for animals in a group and socially interacting with each other, here we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-05, Vol.9 (1), p.7460-7460, Article 7460
Hauptverfasser: Inagaki, Shigenori, Agetsuma, Masakazu, Ohara, Shinya, Iijima, Toshio, Yokota, Hideo, Wazawa, Tetsuichi, Arai, Yoshiyuki, Nagai, Takeharu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7460
container_issue 1
container_start_page 7460
container_title Scientific reports
container_volume 9
creator Inagaki, Shigenori
Agetsuma, Masakazu
Ohara, Shinya
Iijima, Toshio
Yokota, Hideo
Wazawa, Tetsuichi
Arai, Yoshiyuki
Nagai, Takeharu
description Electrophysiological field potential dynamics have been widely used to investigate brain functions and related psychiatric disorders. Considering recent demand for its applicability to freely moving subjects, especially for animals in a group and socially interacting with each other, here we propose a new method based on a bioluminescent voltage indicator LOTUS-V. Using our fiber-free recording method based on the LOTUS-V, we succeeded in capturing dynamic change of brain activity in freely moving mice. Because LOTUS-V is the ratiometric indicator, motion and head-angle artifacts were not significantly detected. Taking advantage of our method as a fiber-free system, we further succeeded in simultaneously recording from multiple independently-locomotive mice that were freely interacting with one another. Importantly, this enabled us to find that the primary visual cortex, a center of visual processing, was activated during the interaction of mice. This methodology may further facilitate a wide range of studies in neurobiology and psychiatry.
doi_str_mv 10.1038/s41598-019-43897-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6522513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232053891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-671e8ec38f665a8dcd5b9f6f2201656dcb340d48dc747c5e89107f25238bb5c3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CALHHhEvBn7FyQUAW0UiUuPXCzHGey68qOFztZdf99HbYthQO-eKx55h3PvAi9peQjJVx_KoLKTjeEdo3gulPN3Qt0yoiQDeOMvXwWn6DzUm5JPZJ1gnav0QmnpFNKk1P08yrajZ82OCRnA-6z9RO2bvZ7Px9wGnFcwux3AfCYAcIBx7Rf8egd4LK1eX3M2xrbCBimvc9pijDNb9Cr0YYC5w_3Gbr59vXm4rK5_vH96uLLdeOkUnPTKgoaHNdj20qrBzfIvhvbkTFCW9kOrueCDKImlFBOgu4oUSOTjOu-l46foc9H2d3SRxhc7ZxtMLvso80Hk6w3f2cmvzWbtDetZExSXgU-PAjk9GuBMpvoi4MQ7ARpKYbVFRJZN0wr-v4f9DYtearTVYq1gjMhVoodKZdTKRnGp89QYlbrzNE6U60zv60zd7Xo3fMxnkoejaoAPwJlt64c8p_e_5G9BzPFphQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226432441</pqid></control><display><type>article</type><title>Imaging local brain activity of multiple freely moving mice sharing the same environment</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Inagaki, Shigenori ; Agetsuma, Masakazu ; Ohara, Shinya ; Iijima, Toshio ; Yokota, Hideo ; Wazawa, Tetsuichi ; Arai, Yoshiyuki ; Nagai, Takeharu</creator><creatorcontrib>Inagaki, Shigenori ; Agetsuma, Masakazu ; Ohara, Shinya ; Iijima, Toshio ; Yokota, Hideo ; Wazawa, Tetsuichi ; Arai, Yoshiyuki ; Nagai, Takeharu</creatorcontrib><description>Electrophysiological field potential dynamics have been widely used to investigate brain functions and related psychiatric disorders. Considering recent demand for its applicability to freely moving subjects, especially for animals in a group and socially interacting with each other, here we propose a new method based on a bioluminescent voltage indicator LOTUS-V. Using our fiber-free recording method based on the LOTUS-V, we succeeded in capturing dynamic change of brain activity in freely moving mice. Because LOTUS-V is the ratiometric indicator, motion and head-angle artifacts were not significantly detected. Taking advantage of our method as a fiber-free system, we further succeeded in simultaneously recording from multiple independently-locomotive mice that were freely interacting with one another. Importantly, this enabled us to find that the primary visual cortex, a center of visual processing, was activated during the interaction of mice. This methodology may further facilitate a wide range of studies in neurobiology and psychiatry.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-43897-x</identifier><identifier>PMID: 31097780</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>59/5 ; 631/1647/245/2222 ; 631/378/2613 ; 64/60 ; Animals ; Cells, Cultured ; Environment ; Fluorescence Resonance Energy Transfer - methods ; Humanities and Social Sciences ; Information processing ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Male ; Membrane Potentials ; Mental disorders ; Mice ; Mice, Inbred C57BL ; Movement ; multidisciplinary ; Nervous system ; Neuroimaging ; Neurosciences ; Optogenetics - methods ; Patch-Clamp Techniques - methods ; Phosphoric Monoester Hydrolases - genetics ; Phosphoric Monoester Hydrolases - metabolism ; Science ; Science (multidisciplinary) ; Visual cortex ; Visual Cortex - diagnostic imaging ; Visual Cortex - metabolism ; Visual Cortex - physiology</subject><ispartof>Scientific reports, 2019-05, Vol.9 (1), p.7460-7460, Article 7460</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-671e8ec38f665a8dcd5b9f6f2201656dcb340d48dc747c5e89107f25238bb5c3</citedby><cites>FETCH-LOGICAL-c577t-671e8ec38f665a8dcd5b9f6f2201656dcb340d48dc747c5e89107f25238bb5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522513/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522513/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31097780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inagaki, Shigenori</creatorcontrib><creatorcontrib>Agetsuma, Masakazu</creatorcontrib><creatorcontrib>Ohara, Shinya</creatorcontrib><creatorcontrib>Iijima, Toshio</creatorcontrib><creatorcontrib>Yokota, Hideo</creatorcontrib><creatorcontrib>Wazawa, Tetsuichi</creatorcontrib><creatorcontrib>Arai, Yoshiyuki</creatorcontrib><creatorcontrib>Nagai, Takeharu</creatorcontrib><title>Imaging local brain activity of multiple freely moving mice sharing the same environment</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Electrophysiological field potential dynamics have been widely used to investigate brain functions and related psychiatric disorders. Considering recent demand for its applicability to freely moving subjects, especially for animals in a group and socially interacting with each other, here we propose a new method based on a bioluminescent voltage indicator LOTUS-V. Using our fiber-free recording method based on the LOTUS-V, we succeeded in capturing dynamic change of brain activity in freely moving mice. Because LOTUS-V is the ratiometric indicator, motion and head-angle artifacts were not significantly detected. Taking advantage of our method as a fiber-free system, we further succeeded in simultaneously recording from multiple independently-locomotive mice that were freely interacting with one another. Importantly, this enabled us to find that the primary visual cortex, a center of visual processing, was activated during the interaction of mice. This methodology may further facilitate a wide range of studies in neurobiology and psychiatry.</description><subject>59/5</subject><subject>631/1647/245/2222</subject><subject>631/378/2613</subject><subject>64/60</subject><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Environment</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Humanities and Social Sciences</subject><subject>Information processing</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Male</subject><subject>Membrane Potentials</subject><subject>Mental disorders</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Movement</subject><subject>multidisciplinary</subject><subject>Nervous system</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Optogenetics - methods</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Phosphoric Monoester Hydrolases - genetics</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Visual cortex</subject><subject>Visual Cortex - diagnostic imaging</subject><subject>Visual Cortex - metabolism</subject><subject>Visual Cortex - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-CALHHhEvBn7FyQUAW0UiUuPXCzHGey68qOFztZdf99HbYthQO-eKx55h3PvAi9peQjJVx_KoLKTjeEdo3gulPN3Qt0yoiQDeOMvXwWn6DzUm5JPZJ1gnav0QmnpFNKk1P08yrajZ82OCRnA-6z9RO2bvZ7Px9wGnFcwux3AfCYAcIBx7Rf8egd4LK1eX3M2xrbCBimvc9pijDNb9Cr0YYC5w_3Gbr59vXm4rK5_vH96uLLdeOkUnPTKgoaHNdj20qrBzfIvhvbkTFCW9kOrueCDKImlFBOgu4oUSOTjOu-l46foc9H2d3SRxhc7ZxtMLvso80Hk6w3f2cmvzWbtDetZExSXgU-PAjk9GuBMpvoi4MQ7ARpKYbVFRJZN0wr-v4f9DYtearTVYq1gjMhVoodKZdTKRnGp89QYlbrzNE6U60zv60zd7Xo3fMxnkoejaoAPwJlt64c8p_e_5G9BzPFphQ</recordid><startdate>20190516</startdate><enddate>20190516</enddate><creator>Inagaki, Shigenori</creator><creator>Agetsuma, Masakazu</creator><creator>Ohara, Shinya</creator><creator>Iijima, Toshio</creator><creator>Yokota, Hideo</creator><creator>Wazawa, Tetsuichi</creator><creator>Arai, Yoshiyuki</creator><creator>Nagai, Takeharu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190516</creationdate><title>Imaging local brain activity of multiple freely moving mice sharing the same environment</title><author>Inagaki, Shigenori ; Agetsuma, Masakazu ; Ohara, Shinya ; Iijima, Toshio ; Yokota, Hideo ; Wazawa, Tetsuichi ; Arai, Yoshiyuki ; Nagai, Takeharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-671e8ec38f665a8dcd5b9f6f2201656dcb340d48dc747c5e89107f25238bb5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>59/5</topic><topic>631/1647/245/2222</topic><topic>631/378/2613</topic><topic>64/60</topic><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Environment</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Humanities and Social Sciences</topic><topic>Information processing</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Male</topic><topic>Membrane Potentials</topic><topic>Mental disorders</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Movement</topic><topic>multidisciplinary</topic><topic>Nervous system</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Optogenetics - methods</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Phosphoric Monoester Hydrolases - genetics</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Visual cortex</topic><topic>Visual Cortex - diagnostic imaging</topic><topic>Visual Cortex - metabolism</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inagaki, Shigenori</creatorcontrib><creatorcontrib>Agetsuma, Masakazu</creatorcontrib><creatorcontrib>Ohara, Shinya</creatorcontrib><creatorcontrib>Iijima, Toshio</creatorcontrib><creatorcontrib>Yokota, Hideo</creatorcontrib><creatorcontrib>Wazawa, Tetsuichi</creatorcontrib><creatorcontrib>Arai, Yoshiyuki</creatorcontrib><creatorcontrib>Nagai, Takeharu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inagaki, Shigenori</au><au>Agetsuma, Masakazu</au><au>Ohara, Shinya</au><au>Iijima, Toshio</au><au>Yokota, Hideo</au><au>Wazawa, Tetsuichi</au><au>Arai, Yoshiyuki</au><au>Nagai, Takeharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging local brain activity of multiple freely moving mice sharing the same environment</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-05-16</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>7460</spage><epage>7460</epage><pages>7460-7460</pages><artnum>7460</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Electrophysiological field potential dynamics have been widely used to investigate brain functions and related psychiatric disorders. Considering recent demand for its applicability to freely moving subjects, especially for animals in a group and socially interacting with each other, here we propose a new method based on a bioluminescent voltage indicator LOTUS-V. Using our fiber-free recording method based on the LOTUS-V, we succeeded in capturing dynamic change of brain activity in freely moving mice. Because LOTUS-V is the ratiometric indicator, motion and head-angle artifacts were not significantly detected. Taking advantage of our method as a fiber-free system, we further succeeded in simultaneously recording from multiple independently-locomotive mice that were freely interacting with one another. Importantly, this enabled us to find that the primary visual cortex, a center of visual processing, was activated during the interaction of mice. This methodology may further facilitate a wide range of studies in neurobiology and psychiatry.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31097780</pmid><doi>10.1038/s41598-019-43897-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-05, Vol.9 (1), p.7460-7460, Article 7460
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6522513
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 59/5
631/1647/245/2222
631/378/2613
64/60
Animals
Cells, Cultured
Environment
Fluorescence Resonance Energy Transfer - methods
Humanities and Social Sciences
Information processing
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Male
Membrane Potentials
Mental disorders
Mice
Mice, Inbred C57BL
Movement
multidisciplinary
Nervous system
Neuroimaging
Neurosciences
Optogenetics - methods
Patch-Clamp Techniques - methods
Phosphoric Monoester Hydrolases - genetics
Phosphoric Monoester Hydrolases - metabolism
Science
Science (multidisciplinary)
Visual cortex
Visual Cortex - diagnostic imaging
Visual Cortex - metabolism
Visual Cortex - physiology
title Imaging local brain activity of multiple freely moving mice sharing the same environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20local%20brain%20activity%20of%20multiple%20freely%20moving%20mice%20sharing%20the%20same%20environment&rft.jtitle=Scientific%20reports&rft.au=Inagaki,%20Shigenori&rft.date=2019-05-16&rft.volume=9&rft.issue=1&rft.spage=7460&rft.epage=7460&rft.pages=7460-7460&rft.artnum=7460&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-43897-x&rft_dat=%3Cproquest_pubme%3E2232053891%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226432441&rft_id=info:pmid/31097780&rfr_iscdi=true