Swimming Euglena respond to confinement with a behavioural change enabling effective crawling

Some euglenids, a family of aquatic unicellular organisms, can develop highly concerted, large-amplitude peristaltic body deformations. This remarkable behaviour has been known for centuries. Yet, its function remains controversial, and is even viewed as a functionless ancestral vestige. Here, by ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2019-05, Vol.15 (5), p.496-502
Hauptverfasser: Noselli, Giovanni, Beran, Alfred, Arroyo, Marino, DeSimone, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 502
container_issue 5
container_start_page 496
container_title Nature physics
container_volume 15
creator Noselli, Giovanni
Beran, Alfred
Arroyo, Marino
DeSimone, Antonio
description Some euglenids, a family of aquatic unicellular organisms, can develop highly concerted, large-amplitude peristaltic body deformations. This remarkable behaviour has been known for centuries. Yet, its function remains controversial, and is even viewed as a functionless ancestral vestige. Here, by examining swimming Euglena   gracilis in environments of controlled crowding and geometry, we show that this behaviour is triggered by confinement. Under these conditions, it allows cells to switch from unviable flagellar swimming to a new and highly robust mode of fast crawling, which can deal with extreme geometric confinement and turn both frictional and hydraulic resistance into propulsive forces. To understand how a single cell can control such an adaptable and robust mode of locomotion, we developed a computational model of the motile apparatus of Euglena cells consisting of an active striated cell envelope. Our modelling shows that gait adaptability does not require specific mechanosensitive feedback but instead can be explained by the mechanical self-regulation of an elastic and extended motor system. Our study thus identifies a locomotory function and the operating principles of the adaptable peristaltic body deformation of Euglena cells. Euglenids are unicellular swimmers that undergo striking cell body deformations, interpreted variously as locomotive or functionally redundant. Experiments now suggest that these deformations enable adaptation to a fast crawling mode when the cells are confined.
doi_str_mv 10.1038/s41567-019-0425-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6522345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232085388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-c2bb6f8fb53df387798732ca3d9cdca115d01c91b5bbad135ede052e3cd512803</originalsourceid><addsrcrecordid>eNp1Uctu1DAUjRCIlsIHsEGW2LAJ-Npx4myQUFUeUiUWwBJZftzMuErswU5m1L_HYcpQkFhY9vU959zHqarnQF8D5fJNbkC0XU2hr2nDRC0fVOfQNaJmjYSHp3fHz6onOd_QAmqBP67OOABQIcR59f3LwU-TDxtytWxGDJokzLsYHJkjsTEMPuCEYSYHP2-JJga3eu_jkvRI7FaHDZJCMuOqgMOAdvZ7JDbpw_r1tHo06DHjs7v7ovr2_urr5cf6-vOHT5fvrmsrgM21Zca0gxyM4G7gsut62XFmNXe9dVYDCEfB9mCEMdoBF-iQCobcusKXlF9Ub4-6u8VM6GxpuDSodslPOt2qqL36OxP8Vm3iXrWCMd6IIgBHAZsXqxJaTFbPv4inYD2MdkxxIbuGFc6ru6Ip_lgwz2ry2eI46oBxyaooMyoFl7JAX_4DvSkrDGUlBQWyb_umkfeaSDHnhMNpAKBqNVwdDVfFcLUarlbOi_uTnxi_HS4AdgTkkip2pT-l_6_6E8Aht-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218969448</pqid></control><display><type>article</type><title>Swimming Euglena respond to confinement with a behavioural change enabling effective crawling</title><source>Springer journals</source><source>Recercat</source><source>Springer Nature - Connect here FIRST to enable access</source><creator>Noselli, Giovanni ; Beran, Alfred ; Arroyo, Marino ; DeSimone, Antonio</creator><creatorcontrib>Noselli, Giovanni ; Beran, Alfred ; Arroyo, Marino ; DeSimone, Antonio</creatorcontrib><description>Some euglenids, a family of aquatic unicellular organisms, can develop highly concerted, large-amplitude peristaltic body deformations. This remarkable behaviour has been known for centuries. Yet, its function remains controversial, and is even viewed as a functionless ancestral vestige. Here, by examining swimming Euglena   gracilis in environments of controlled crowding and geometry, we show that this behaviour is triggered by confinement. Under these conditions, it allows cells to switch from unviable flagellar swimming to a new and highly robust mode of fast crawling, which can deal with extreme geometric confinement and turn both frictional and hydraulic resistance into propulsive forces. To understand how a single cell can control such an adaptable and robust mode of locomotion, we developed a computational model of the motile apparatus of Euglena cells consisting of an active striated cell envelope. Our modelling shows that gait adaptability does not require specific mechanosensitive feedback but instead can be explained by the mechanical self-regulation of an elastic and extended motor system. Our study thus identifies a locomotory function and the operating principles of the adaptable peristaltic body deformation of Euglena cells. Euglenids are unicellular swimmers that undergo striking cell body deformations, interpreted variously as locomotive or functionally redundant. Experiments now suggest that these deformations enable adaptation to a fast crawling mode when the cells are confined.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0425-8</identifier><identifier>PMID: 31110555</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/343 ; 631/57/343/1361 ; 639/766/747 ; 92 Biology and other natural sciences ; 92C Physiological, cellular and medical topics ; Adaptability ; Atomic ; Automatic control ; Biologia ; Biology ; Classical and Continuum Physics ; Classificació AMS ; Complex Systems ; Condensed Matter Physics ; Confinement ; Deformation mechanisms ; Euglena ; Friction resistance ; Gait ; Locomotion ; Matemàtica aplicada a les ciències ; Matemàtiques i estadística ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Swimming ; Theoretical ; Àrees temàtiques de la UPC</subject><ispartof>Nature physics, 2019-05, Vol.15 (5), p.496-502</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-c2bb6f8fb53df387798732ca3d9cdca115d01c91b5bbad135ede052e3cd512803</citedby><cites>FETCH-LOGICAL-c512t-c2bb6f8fb53df387798732ca3d9cdca115d01c91b5bbad135ede052e3cd512803</cites><orcidid>0000-0002-2632-3057 ; 0000-0003-1647-940X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-019-0425-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-019-0425-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,26973,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31110555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Noselli, Giovanni</creatorcontrib><creatorcontrib>Beran, Alfred</creatorcontrib><creatorcontrib>Arroyo, Marino</creatorcontrib><creatorcontrib>DeSimone, Antonio</creatorcontrib><title>Swimming Euglena respond to confinement with a behavioural change enabling effective crawling</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><addtitle>Nat Phys</addtitle><description>Some euglenids, a family of aquatic unicellular organisms, can develop highly concerted, large-amplitude peristaltic body deformations. This remarkable behaviour has been known for centuries. Yet, its function remains controversial, and is even viewed as a functionless ancestral vestige. Here, by examining swimming Euglena   gracilis in environments of controlled crowding and geometry, we show that this behaviour is triggered by confinement. Under these conditions, it allows cells to switch from unviable flagellar swimming to a new and highly robust mode of fast crawling, which can deal with extreme geometric confinement and turn both frictional and hydraulic resistance into propulsive forces. To understand how a single cell can control such an adaptable and robust mode of locomotion, we developed a computational model of the motile apparatus of Euglena cells consisting of an active striated cell envelope. Our modelling shows that gait adaptability does not require specific mechanosensitive feedback but instead can be explained by the mechanical self-regulation of an elastic and extended motor system. Our study thus identifies a locomotory function and the operating principles of the adaptable peristaltic body deformation of Euglena cells. Euglenids are unicellular swimmers that undergo striking cell body deformations, interpreted variously as locomotive or functionally redundant. Experiments now suggest that these deformations enable adaptation to a fast crawling mode when the cells are confined.</description><subject>631/57/343</subject><subject>631/57/343/1361</subject><subject>639/766/747</subject><subject>92 Biology and other natural sciences</subject><subject>92C Physiological, cellular and medical topics</subject><subject>Adaptability</subject><subject>Atomic</subject><subject>Automatic control</subject><subject>Biologia</subject><subject>Biology</subject><subject>Classical and Continuum Physics</subject><subject>Classificació AMS</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Confinement</subject><subject>Deformation mechanisms</subject><subject>Euglena</subject><subject>Friction resistance</subject><subject>Gait</subject><subject>Locomotion</subject><subject>Matemàtica aplicada a les ciències</subject><subject>Matemàtiques i estadística</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Swimming</subject><subject>Theoretical</subject><subject>Àrees temàtiques de la UPC</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>XX2</sourceid><recordid>eNp1Uctu1DAUjRCIlsIHsEGW2LAJ-Npx4myQUFUeUiUWwBJZftzMuErswU5m1L_HYcpQkFhY9vU959zHqarnQF8D5fJNbkC0XU2hr2nDRC0fVOfQNaJmjYSHp3fHz6onOd_QAmqBP67OOABQIcR59f3LwU-TDxtytWxGDJokzLsYHJkjsTEMPuCEYSYHP2-JJga3eu_jkvRI7FaHDZJCMuOqgMOAdvZ7JDbpw_r1tHo06DHjs7v7ovr2_urr5cf6-vOHT5fvrmsrgM21Zca0gxyM4G7gsut62XFmNXe9dVYDCEfB9mCEMdoBF-iQCobcusKXlF9Ub4-6u8VM6GxpuDSodslPOt2qqL36OxP8Vm3iXrWCMd6IIgBHAZsXqxJaTFbPv4inYD2MdkxxIbuGFc6ru6Ip_lgwz2ry2eI46oBxyaooMyoFl7JAX_4DvSkrDGUlBQWyb_umkfeaSDHnhMNpAKBqNVwdDVfFcLUarlbOi_uTnxi_HS4AdgTkkip2pT-l_6_6E8Aht-Q</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Noselli, Giovanni</creator><creator>Beran, Alfred</creator><creator>Arroyo, Marino</creator><creator>DeSimone, Antonio</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2632-3057</orcidid><orcidid>https://orcid.org/0000-0003-1647-940X</orcidid></search><sort><creationdate>20190501</creationdate><title>Swimming Euglena respond to confinement with a behavioural change enabling effective crawling</title><author>Noselli, Giovanni ; Beran, Alfred ; Arroyo, Marino ; DeSimone, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-c2bb6f8fb53df387798732ca3d9cdca115d01c91b5bbad135ede052e3cd512803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/57/343</topic><topic>631/57/343/1361</topic><topic>639/766/747</topic><topic>92 Biology and other natural sciences</topic><topic>92C Physiological, cellular and medical topics</topic><topic>Adaptability</topic><topic>Atomic</topic><topic>Automatic control</topic><topic>Biologia</topic><topic>Biology</topic><topic>Classical and Continuum Physics</topic><topic>Classificació AMS</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Confinement</topic><topic>Deformation mechanisms</topic><topic>Euglena</topic><topic>Friction resistance</topic><topic>Gait</topic><topic>Locomotion</topic><topic>Matemàtica aplicada a les ciències</topic><topic>Matemàtiques i estadística</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Swimming</topic><topic>Theoretical</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noselli, Giovanni</creatorcontrib><creatorcontrib>Beran, Alfred</creatorcontrib><creatorcontrib>Arroyo, Marino</creatorcontrib><creatorcontrib>DeSimone, Antonio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noselli, Giovanni</au><au>Beran, Alfred</au><au>Arroyo, Marino</au><au>DeSimone, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swimming Euglena respond to confinement with a behavioural change enabling effective crawling</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><addtitle>Nat Phys</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>15</volume><issue>5</issue><spage>496</spage><epage>502</epage><pages>496-502</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Some euglenids, a family of aquatic unicellular organisms, can develop highly concerted, large-amplitude peristaltic body deformations. This remarkable behaviour has been known for centuries. Yet, its function remains controversial, and is even viewed as a functionless ancestral vestige. Here, by examining swimming Euglena   gracilis in environments of controlled crowding and geometry, we show that this behaviour is triggered by confinement. Under these conditions, it allows cells to switch from unviable flagellar swimming to a new and highly robust mode of fast crawling, which can deal with extreme geometric confinement and turn both frictional and hydraulic resistance into propulsive forces. To understand how a single cell can control such an adaptable and robust mode of locomotion, we developed a computational model of the motile apparatus of Euglena cells consisting of an active striated cell envelope. Our modelling shows that gait adaptability does not require specific mechanosensitive feedback but instead can be explained by the mechanical self-regulation of an elastic and extended motor system. Our study thus identifies a locomotory function and the operating principles of the adaptable peristaltic body deformation of Euglena cells. Euglenids are unicellular swimmers that undergo striking cell body deformations, interpreted variously as locomotive or functionally redundant. Experiments now suggest that these deformations enable adaptation to a fast crawling mode when the cells are confined.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31110555</pmid><doi>10.1038/s41567-019-0425-8</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2632-3057</orcidid><orcidid>https://orcid.org/0000-0003-1647-940X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2019-05, Vol.15 (5), p.496-502
issn 1745-2473
1745-2481
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6522345
source Springer journals; Recercat; Springer Nature - Connect here FIRST to enable access
subjects 631/57/343
631/57/343/1361
639/766/747
92 Biology and other natural sciences
92C Physiological, cellular and medical topics
Adaptability
Atomic
Automatic control
Biologia
Biology
Classical and Continuum Physics
Classificació AMS
Complex Systems
Condensed Matter Physics
Confinement
Deformation mechanisms
Euglena
Friction resistance
Gait
Locomotion
Matemàtica aplicada a les ciències
Matemàtiques i estadística
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Swimming
Theoretical
Àrees temàtiques de la UPC
title Swimming Euglena respond to confinement with a behavioural change enabling effective crawling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swimming%20Euglena%20respond%20to%20confinement%20with%20a%20behavioural%20change%20enabling%20effective%20crawling&rft.jtitle=Nature%20physics&rft.au=Noselli,%20Giovanni&rft.date=2019-05-01&rft.volume=15&rft.issue=5&rft.spage=496&rft.epage=502&rft.pages=496-502&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0425-8&rft_dat=%3Cproquest_pubme%3E2232085388%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218969448&rft_id=info:pmid/31110555&rfr_iscdi=true