Swimming Euglena respond to confinement with a behavioural change enabling effective crawling
Some euglenids, a family of aquatic unicellular organisms, can develop highly concerted, large-amplitude peristaltic body deformations. This remarkable behaviour has been known for centuries. Yet, its function remains controversial, and is even viewed as a functionless ancestral vestige. Here, by ex...
Gespeichert in:
Veröffentlicht in: | Nature physics 2019-05, Vol.15 (5), p.496-502 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 502 |
---|---|
container_issue | 5 |
container_start_page | 496 |
container_title | Nature physics |
container_volume | 15 |
creator | Noselli, Giovanni Beran, Alfred Arroyo, Marino DeSimone, Antonio |
description | Some euglenids, a family of aquatic unicellular organisms, can develop highly concerted, large-amplitude peristaltic body deformations. This remarkable behaviour has been known for centuries. Yet, its function remains controversial, and is even viewed as a functionless ancestral vestige. Here, by examining swimming
Euglena
gracilis
in environments of controlled crowding and geometry, we show that this behaviour is triggered by confinement. Under these conditions, it allows cells to switch from unviable flagellar swimming to a new and highly robust mode of fast crawling, which can deal with extreme geometric confinement and turn both frictional and hydraulic resistance into propulsive forces. To understand how a single cell can control such an adaptable and robust mode of locomotion, we developed a computational model of the motile apparatus of
Euglena
cells consisting of an active striated cell envelope. Our modelling shows that gait adaptability does not require specific mechanosensitive feedback but instead can be explained by the mechanical self-regulation of an elastic and extended motor system. Our study thus identifies a locomotory function and the operating principles of the adaptable peristaltic body deformation of
Euglena
cells.
Euglenids are unicellular swimmers that undergo striking cell body deformations, interpreted variously as locomotive or functionally redundant. Experiments now suggest that these deformations enable adaptation to a fast crawling mode when the cells are confined. |
doi_str_mv | 10.1038/s41567-019-0425-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6522345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232085388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-c2bb6f8fb53df387798732ca3d9cdca115d01c91b5bbad135ede052e3cd512803</originalsourceid><addsrcrecordid>eNp1Uctu1DAUjRCIlsIHsEGW2LAJ-Npx4myQUFUeUiUWwBJZftzMuErswU5m1L_HYcpQkFhY9vU959zHqarnQF8D5fJNbkC0XU2hr2nDRC0fVOfQNaJmjYSHp3fHz6onOd_QAmqBP67OOABQIcR59f3LwU-TDxtytWxGDJokzLsYHJkjsTEMPuCEYSYHP2-JJga3eu_jkvRI7FaHDZJCMuOqgMOAdvZ7JDbpw_r1tHo06DHjs7v7ovr2_urr5cf6-vOHT5fvrmsrgM21Zca0gxyM4G7gsut62XFmNXe9dVYDCEfB9mCEMdoBF-iQCobcusKXlF9Ub4-6u8VM6GxpuDSodslPOt2qqL36OxP8Vm3iXrWCMd6IIgBHAZsXqxJaTFbPv4inYD2MdkxxIbuGFc6ru6Ip_lgwz2ry2eI46oBxyaooMyoFl7JAX_4DvSkrDGUlBQWyb_umkfeaSDHnhMNpAKBqNVwdDVfFcLUarlbOi_uTnxi_HS4AdgTkkip2pT-l_6_6E8Aht-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218969448</pqid></control><display><type>article</type><title>Swimming Euglena respond to confinement with a behavioural change enabling effective crawling</title><source>Springer journals</source><source>Recercat</source><source>Springer Nature - Connect here FIRST to enable access</source><creator>Noselli, Giovanni ; Beran, Alfred ; Arroyo, Marino ; DeSimone, Antonio</creator><creatorcontrib>Noselli, Giovanni ; Beran, Alfred ; Arroyo, Marino ; DeSimone, Antonio</creatorcontrib><description>Some euglenids, a family of aquatic unicellular organisms, can develop highly concerted, large-amplitude peristaltic body deformations. This remarkable behaviour has been known for centuries. Yet, its function remains controversial, and is even viewed as a functionless ancestral vestige. Here, by examining swimming
Euglena
gracilis
in environments of controlled crowding and geometry, we show that this behaviour is triggered by confinement. Under these conditions, it allows cells to switch from unviable flagellar swimming to a new and highly robust mode of fast crawling, which can deal with extreme geometric confinement and turn both frictional and hydraulic resistance into propulsive forces. To understand how a single cell can control such an adaptable and robust mode of locomotion, we developed a computational model of the motile apparatus of
Euglena
cells consisting of an active striated cell envelope. Our modelling shows that gait adaptability does not require specific mechanosensitive feedback but instead can be explained by the mechanical self-regulation of an elastic and extended motor system. Our study thus identifies a locomotory function and the operating principles of the adaptable peristaltic body deformation of
Euglena
cells.
Euglenids are unicellular swimmers that undergo striking cell body deformations, interpreted variously as locomotive or functionally redundant. Experiments now suggest that these deformations enable adaptation to a fast crawling mode when the cells are confined.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0425-8</identifier><identifier>PMID: 31110555</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/343 ; 631/57/343/1361 ; 639/766/747 ; 92 Biology and other natural sciences ; 92C Physiological, cellular and medical topics ; Adaptability ; Atomic ; Automatic control ; Biologia ; Biology ; Classical and Continuum Physics ; Classificació AMS ; Complex Systems ; Condensed Matter Physics ; Confinement ; Deformation mechanisms ; Euglena ; Friction resistance ; Gait ; Locomotion ; Matemàtica aplicada a les ciències ; Matemàtiques i estadística ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Swimming ; Theoretical ; Àrees temàtiques de la UPC</subject><ispartof>Nature physics, 2019-05, Vol.15 (5), p.496-502</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-c2bb6f8fb53df387798732ca3d9cdca115d01c91b5bbad135ede052e3cd512803</citedby><cites>FETCH-LOGICAL-c512t-c2bb6f8fb53df387798732ca3d9cdca115d01c91b5bbad135ede052e3cd512803</cites><orcidid>0000-0002-2632-3057 ; 0000-0003-1647-940X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-019-0425-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-019-0425-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,26973,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31110555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Noselli, Giovanni</creatorcontrib><creatorcontrib>Beran, Alfred</creatorcontrib><creatorcontrib>Arroyo, Marino</creatorcontrib><creatorcontrib>DeSimone, Antonio</creatorcontrib><title>Swimming Euglena respond to confinement with a behavioural change enabling effective crawling</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><addtitle>Nat Phys</addtitle><description>Some euglenids, a family of aquatic unicellular organisms, can develop highly concerted, large-amplitude peristaltic body deformations. This remarkable behaviour has been known for centuries. Yet, its function remains controversial, and is even viewed as a functionless ancestral vestige. Here, by examining swimming
Euglena
gracilis
in environments of controlled crowding and geometry, we show that this behaviour is triggered by confinement. Under these conditions, it allows cells to switch from unviable flagellar swimming to a new and highly robust mode of fast crawling, which can deal with extreme geometric confinement and turn both frictional and hydraulic resistance into propulsive forces. To understand how a single cell can control such an adaptable and robust mode of locomotion, we developed a computational model of the motile apparatus of
Euglena
cells consisting of an active striated cell envelope. Our modelling shows that gait adaptability does not require specific mechanosensitive feedback but instead can be explained by the mechanical self-regulation of an elastic and extended motor system. Our study thus identifies a locomotory function and the operating principles of the adaptable peristaltic body deformation of
Euglena
cells.
Euglenids are unicellular swimmers that undergo striking cell body deformations, interpreted variously as locomotive or functionally redundant. Experiments now suggest that these deformations enable adaptation to a fast crawling mode when the cells are confined.</description><subject>631/57/343</subject><subject>631/57/343/1361</subject><subject>639/766/747</subject><subject>92 Biology and other natural sciences</subject><subject>92C Physiological, cellular and medical topics</subject><subject>Adaptability</subject><subject>Atomic</subject><subject>Automatic control</subject><subject>Biologia</subject><subject>Biology</subject><subject>Classical and Continuum Physics</subject><subject>Classificació AMS</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Confinement</subject><subject>Deformation mechanisms</subject><subject>Euglena</subject><subject>Friction resistance</subject><subject>Gait</subject><subject>Locomotion</subject><subject>Matemàtica aplicada a les ciències</subject><subject>Matemàtiques i estadística</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Swimming</subject><subject>Theoretical</subject><subject>Àrees temàtiques de la UPC</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>XX2</sourceid><recordid>eNp1Uctu1DAUjRCIlsIHsEGW2LAJ-Npx4myQUFUeUiUWwBJZftzMuErswU5m1L_HYcpQkFhY9vU959zHqarnQF8D5fJNbkC0XU2hr2nDRC0fVOfQNaJmjYSHp3fHz6onOd_QAmqBP67OOABQIcR59f3LwU-TDxtytWxGDJokzLsYHJkjsTEMPuCEYSYHP2-JJga3eu_jkvRI7FaHDZJCMuOqgMOAdvZ7JDbpw_r1tHo06DHjs7v7ovr2_urr5cf6-vOHT5fvrmsrgM21Zca0gxyM4G7gsut62XFmNXe9dVYDCEfB9mCEMdoBF-iQCobcusKXlF9Ub4-6u8VM6GxpuDSodslPOt2qqL36OxP8Vm3iXrWCMd6IIgBHAZsXqxJaTFbPv4inYD2MdkxxIbuGFc6ru6Ip_lgwz2ry2eI46oBxyaooMyoFl7JAX_4DvSkrDGUlBQWyb_umkfeaSDHnhMNpAKBqNVwdDVfFcLUarlbOi_uTnxi_HS4AdgTkkip2pT-l_6_6E8Aht-Q</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Noselli, Giovanni</creator><creator>Beran, Alfred</creator><creator>Arroyo, Marino</creator><creator>DeSimone, Antonio</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2632-3057</orcidid><orcidid>https://orcid.org/0000-0003-1647-940X</orcidid></search><sort><creationdate>20190501</creationdate><title>Swimming Euglena respond to confinement with a behavioural change enabling effective crawling</title><author>Noselli, Giovanni ; Beran, Alfred ; Arroyo, Marino ; DeSimone, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-c2bb6f8fb53df387798732ca3d9cdca115d01c91b5bbad135ede052e3cd512803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/57/343</topic><topic>631/57/343/1361</topic><topic>639/766/747</topic><topic>92 Biology and other natural sciences</topic><topic>92C Physiological, cellular and medical topics</topic><topic>Adaptability</topic><topic>Atomic</topic><topic>Automatic control</topic><topic>Biologia</topic><topic>Biology</topic><topic>Classical and Continuum Physics</topic><topic>Classificació AMS</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Confinement</topic><topic>Deformation mechanisms</topic><topic>Euglena</topic><topic>Friction resistance</topic><topic>Gait</topic><topic>Locomotion</topic><topic>Matemàtica aplicada a les ciències</topic><topic>Matemàtiques i estadística</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Swimming</topic><topic>Theoretical</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noselli, Giovanni</creatorcontrib><creatorcontrib>Beran, Alfred</creatorcontrib><creatorcontrib>Arroyo, Marino</creatorcontrib><creatorcontrib>DeSimone, Antonio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noselli, Giovanni</au><au>Beran, Alfred</au><au>Arroyo, Marino</au><au>DeSimone, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swimming Euglena respond to confinement with a behavioural change enabling effective crawling</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><addtitle>Nat Phys</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>15</volume><issue>5</issue><spage>496</spage><epage>502</epage><pages>496-502</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Some euglenids, a family of aquatic unicellular organisms, can develop highly concerted, large-amplitude peristaltic body deformations. This remarkable behaviour has been known for centuries. Yet, its function remains controversial, and is even viewed as a functionless ancestral vestige. Here, by examining swimming
Euglena
gracilis
in environments of controlled crowding and geometry, we show that this behaviour is triggered by confinement. Under these conditions, it allows cells to switch from unviable flagellar swimming to a new and highly robust mode of fast crawling, which can deal with extreme geometric confinement and turn both frictional and hydraulic resistance into propulsive forces. To understand how a single cell can control such an adaptable and robust mode of locomotion, we developed a computational model of the motile apparatus of
Euglena
cells consisting of an active striated cell envelope. Our modelling shows that gait adaptability does not require specific mechanosensitive feedback but instead can be explained by the mechanical self-regulation of an elastic and extended motor system. Our study thus identifies a locomotory function and the operating principles of the adaptable peristaltic body deformation of
Euglena
cells.
Euglenids are unicellular swimmers that undergo striking cell body deformations, interpreted variously as locomotive or functionally redundant. Experiments now suggest that these deformations enable adaptation to a fast crawling mode when the cells are confined.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31110555</pmid><doi>10.1038/s41567-019-0425-8</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2632-3057</orcidid><orcidid>https://orcid.org/0000-0003-1647-940X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2019-05, Vol.15 (5), p.496-502 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6522345 |
source | Springer journals; Recercat; Springer Nature - Connect here FIRST to enable access |
subjects | 631/57/343 631/57/343/1361 639/766/747 92 Biology and other natural sciences 92C Physiological, cellular and medical topics Adaptability Atomic Automatic control Biologia Biology Classical and Continuum Physics Classificació AMS Complex Systems Condensed Matter Physics Confinement Deformation mechanisms Euglena Friction resistance Gait Locomotion Matemàtica aplicada a les ciències Matemàtiques i estadística Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Physics and Astronomy Swimming Theoretical Àrees temàtiques de la UPC |
title | Swimming Euglena respond to confinement with a behavioural change enabling effective crawling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swimming%20Euglena%20respond%20to%20confinement%20with%20a%20behavioural%20change%20enabling%20effective%20crawling&rft.jtitle=Nature%20physics&rft.au=Noselli,%20Giovanni&rft.date=2019-05-01&rft.volume=15&rft.issue=5&rft.spage=496&rft.epage=502&rft.pages=496-502&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0425-8&rft_dat=%3Cproquest_pubme%3E2232085388%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218969448&rft_id=info:pmid/31110555&rfr_iscdi=true |