Application of a long short-term memory neural network: a burgeoning method of deep learning in forecasting HIV incidence in Guangxi, China
Guangxi, a province in southwestern China, has the second highest reported number of HIV/AIDS cases in China. This study aimed to develop an accurate and effective model to describe the tendency of HIV and to predict its incidence in Guangxi. HIV incidence data of Guangxi from 2005 to 2016 were obta...
Gespeichert in:
Veröffentlicht in: | Epidemiology and infection 2019-01, Vol.147, p.1-7, Article e194 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Epidemiology and infection |
container_volume | 147 |
creator | Wang, G. Wei, W. Jiang, J. Ning, C. Chen, H. Huang, J. Liang, B. Zang, N. Liao, Y. Chen, R. Lai, J. Zhou, O. Han, J. Liang, H. Ye, L. |
description | Guangxi, a province in southwestern China, has the second highest reported number of HIV/AIDS cases in China. This study aimed to develop an accurate and effective model to describe the tendency of HIV and to predict its incidence in Guangxi. HIV incidence data of Guangxi from 2005 to 2016 were obtained from the database of the Chinese Center for Disease Control and Prevention. Long short-term memory (LSTM) neural network models, autoregressive integrated moving average (ARIMA) models, generalised regression neural network (GRNN) models and exponential smoothing (ES) were used to fit the incidence data. Data from 2015 and 2016 were used to validate the most suitable models. The model performances were evaluated by evaluating metrics, including mean square error (MSE), root mean square error, mean absolute error and mean absolute percentage error. The LSTM model had the lowest MSE when the N value (time step) was 12. The most appropriate ARIMA models for incidence in 2015 and 2016 were ARIMA (1, 1, 2) (0, 1, 2)12 and ARIMA (2, 1, 0) (1, 1, 2)12, respectively. The accuracy of GRNN and ES models in forecasting HIV incidence in Guangxi was relatively poor. Four performance metrics of the LSTM model were all lower than the ARIMA, GRNN and ES models. The LSTM model was more effective than other time-series models and is important for the monitoring and control of local HIV epidemics. |
doi_str_mv | 10.1017/S095026881900075X |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6518582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27023527</jstor_id><sourcerecordid>27023527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-9ccbd19ca928925217a4a211ebf547164797cb17ffbe69da49b2cf55b4c520ae3</originalsourceid><addsrcrecordid>eNplkUtLAzEUhYMotlZ_gAtlwI2b0SSTx2QjlOILBBcquAuZNNNOnZmMSUbpvzeltfhY3cX57rnncgA4RvACQcQvn6CgELM8RwJCyOnrDhgiwkRKCBS7YLiS05U-AAfeLyIjcM73wSBDGSOUiiFg466rK61CZdvElolKatvOEj-3LqTBuCZpTGPdMmlN71QdR_i07u0Q7JWq9uZoM0fg5eb6eXKXPjze3k_GD6kmRIRUaF1MkdAq3hWYYsQVURghU5SUcMQIF1wXiJdlYZiYKiIKrEtKC6IphspkI3C19u36ojFTbdoQU8jOVY1yS2lVJX8rbTWXM_shGUU5zXE0ON8YOPveGx9kU3lt6lq1xvZeYsw4gSTmi-jZH3Rhe9fG9yKFEctFxmik0JrSznrvTLkNg6BctSL_tRJ3Tn9-sd34riECJ2tg4YN1Wx1ziDOKefYFjlaRTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221689365</pqid></control><display><type>article</type><title>Application of a long short-term memory neural network: a burgeoning method of deep learning in forecasting HIV incidence in Guangxi, China</title><source>MEDLINE</source><source>PubMed Central</source><creator>Wang, G. ; Wei, W. ; Jiang, J. ; Ning, C. ; Chen, H. ; Huang, J. ; Liang, B. ; Zang, N. ; Liao, Y. ; Chen, R. ; Lai, J. ; Zhou, O. ; Han, J. ; Liang, H. ; Ye, L.</creator><creatorcontrib>Wang, G. ; Wei, W. ; Jiang, J. ; Ning, C. ; Chen, H. ; Huang, J. ; Liang, B. ; Zang, N. ; Liao, Y. ; Chen, R. ; Lai, J. ; Zhou, O. ; Han, J. ; Liang, H. ; Ye, L.</creatorcontrib><description>Guangxi, a province in southwestern China, has the second highest reported number of HIV/AIDS cases in China. This study aimed to develop an accurate and effective model to describe the tendency of HIV and to predict its incidence in Guangxi. HIV incidence data of Guangxi from 2005 to 2016 were obtained from the database of the Chinese Center for Disease Control and Prevention. Long short-term memory (LSTM) neural network models, autoregressive integrated moving average (ARIMA) models, generalised regression neural network (GRNN) models and exponential smoothing (ES) were used to fit the incidence data. Data from 2015 and 2016 were used to validate the most suitable models. The model performances were evaluated by evaluating metrics, including mean square error (MSE), root mean square error, mean absolute error and mean absolute percentage error. The LSTM model had the lowest MSE when the N value (time step) was 12. The most appropriate ARIMA models for incidence in 2015 and 2016 were ARIMA (1, 1, 2) (0, 1, 2)12 and ARIMA (2, 1, 0) (1, 1, 2)12, respectively. The accuracy of GRNN and ES models in forecasting HIV incidence in Guangxi was relatively poor. Four performance metrics of the LSTM model were all lower than the ARIMA, GRNN and ES models. The LSTM model was more effective than other time-series models and is important for the monitoring and control of local HIV epidemics.</description><identifier>ISSN: 0950-2688</identifier><identifier>EISSN: 1469-4409</identifier><identifier>DOI: 10.1017/S095026881900075X</identifier><identifier>PMID: 31364559</identifier><language>eng</language><publisher>England: Cambridge University Press</publisher><subject>Acquired immune deficiency syndrome ; AIDS ; Autoregressive models ; China - epidemiology ; Deep Learning ; Disease control ; Disease prevention ; Epidemics ; Epidemiologic Methods ; Errors ; Forecasting ; Forecasting - methods ; HIV ; HIV Infections - epidemiology ; Human immunodeficiency virus ; Humans ; Incidence ; Model accuracy ; Neural networks ; Original Paper ; Performance measurement ; Preventive medicine ; Regression analysis ; Statistical analysis</subject><ispartof>Epidemiology and infection, 2019-01, Vol.147, p.1-7, Article e194</ispartof><rights>The Author(s) 2019</rights><rights>2019 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2019 2019 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-9ccbd19ca928925217a4a211ebf547164797cb17ffbe69da49b2cf55b4c520ae3</citedby><cites>FETCH-LOGICAL-c449t-9ccbd19ca928925217a4a211ebf547164797cb17ffbe69da49b2cf55b4c520ae3</cites><orcidid>0000-0001-7688-4867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518582/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518582/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31364559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, G.</creatorcontrib><creatorcontrib>Wei, W.</creatorcontrib><creatorcontrib>Jiang, J.</creatorcontrib><creatorcontrib>Ning, C.</creatorcontrib><creatorcontrib>Chen, H.</creatorcontrib><creatorcontrib>Huang, J.</creatorcontrib><creatorcontrib>Liang, B.</creatorcontrib><creatorcontrib>Zang, N.</creatorcontrib><creatorcontrib>Liao, Y.</creatorcontrib><creatorcontrib>Chen, R.</creatorcontrib><creatorcontrib>Lai, J.</creatorcontrib><creatorcontrib>Zhou, O.</creatorcontrib><creatorcontrib>Han, J.</creatorcontrib><creatorcontrib>Liang, H.</creatorcontrib><creatorcontrib>Ye, L.</creatorcontrib><title>Application of a long short-term memory neural network: a burgeoning method of deep learning in forecasting HIV incidence in Guangxi, China</title><title>Epidemiology and infection</title><addtitle>Epidemiol Infect</addtitle><description>Guangxi, a province in southwestern China, has the second highest reported number of HIV/AIDS cases in China. This study aimed to develop an accurate and effective model to describe the tendency of HIV and to predict its incidence in Guangxi. HIV incidence data of Guangxi from 2005 to 2016 were obtained from the database of the Chinese Center for Disease Control and Prevention. Long short-term memory (LSTM) neural network models, autoregressive integrated moving average (ARIMA) models, generalised regression neural network (GRNN) models and exponential smoothing (ES) were used to fit the incidence data. Data from 2015 and 2016 were used to validate the most suitable models. The model performances were evaluated by evaluating metrics, including mean square error (MSE), root mean square error, mean absolute error and mean absolute percentage error. The LSTM model had the lowest MSE when the N value (time step) was 12. The most appropriate ARIMA models for incidence in 2015 and 2016 were ARIMA (1, 1, 2) (0, 1, 2)12 and ARIMA (2, 1, 0) (1, 1, 2)12, respectively. The accuracy of GRNN and ES models in forecasting HIV incidence in Guangxi was relatively poor. Four performance metrics of the LSTM model were all lower than the ARIMA, GRNN and ES models. The LSTM model was more effective than other time-series models and is important for the monitoring and control of local HIV epidemics.</description><subject>Acquired immune deficiency syndrome</subject><subject>AIDS</subject><subject>Autoregressive models</subject><subject>China - epidemiology</subject><subject>Deep Learning</subject><subject>Disease control</subject><subject>Disease prevention</subject><subject>Epidemics</subject><subject>Epidemiologic Methods</subject><subject>Errors</subject><subject>Forecasting</subject><subject>Forecasting - methods</subject><subject>HIV</subject><subject>HIV Infections - epidemiology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Incidence</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Performance measurement</subject><subject>Preventive medicine</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><issn>0950-2688</issn><issn>1469-4409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkUtLAzEUhYMotlZ_gAtlwI2b0SSTx2QjlOILBBcquAuZNNNOnZmMSUbpvzeltfhY3cX57rnncgA4RvACQcQvn6CgELM8RwJCyOnrDhgiwkRKCBS7YLiS05U-AAfeLyIjcM73wSBDGSOUiiFg466rK61CZdvElolKatvOEj-3LqTBuCZpTGPdMmlN71QdR_i07u0Q7JWq9uZoM0fg5eb6eXKXPjze3k_GD6kmRIRUaF1MkdAq3hWYYsQVURghU5SUcMQIF1wXiJdlYZiYKiIKrEtKC6IphspkI3C19u36ojFTbdoQU8jOVY1yS2lVJX8rbTWXM_shGUU5zXE0ON8YOPveGx9kU3lt6lq1xvZeYsw4gSTmi-jZH3Rhe9fG9yKFEctFxmik0JrSznrvTLkNg6BctSL_tRJ3Tn9-sd34riECJ2tg4YN1Wx1ziDOKefYFjlaRTg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Wang, G.</creator><creator>Wei, W.</creator><creator>Jiang, J.</creator><creator>Ning, C.</creator><creator>Chen, H.</creator><creator>Huang, J.</creator><creator>Liang, B.</creator><creator>Zang, N.</creator><creator>Liao, Y.</creator><creator>Chen, R.</creator><creator>Lai, J.</creator><creator>Zhou, O.</creator><creator>Han, J.</creator><creator>Liang, H.</creator><creator>Ye, L.</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T2</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7688-4867</orcidid></search><sort><creationdate>20190101</creationdate><title>Application of a long short-term memory neural network</title><author>Wang, G. ; Wei, W. ; Jiang, J. ; Ning, C. ; Chen, H. ; Huang, J. ; Liang, B. ; Zang, N. ; Liao, Y. ; Chen, R. ; Lai, J. ; Zhou, O. ; Han, J. ; Liang, H. ; Ye, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-9ccbd19ca928925217a4a211ebf547164797cb17ffbe69da49b2cf55b4c520ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acquired immune deficiency syndrome</topic><topic>AIDS</topic><topic>Autoregressive models</topic><topic>China - epidemiology</topic><topic>Deep Learning</topic><topic>Disease control</topic><topic>Disease prevention</topic><topic>Epidemics</topic><topic>Epidemiologic Methods</topic><topic>Errors</topic><topic>Forecasting</topic><topic>Forecasting - methods</topic><topic>HIV</topic><topic>HIV Infections - epidemiology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Incidence</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Performance measurement</topic><topic>Preventive medicine</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, G.</creatorcontrib><creatorcontrib>Wei, W.</creatorcontrib><creatorcontrib>Jiang, J.</creatorcontrib><creatorcontrib>Ning, C.</creatorcontrib><creatorcontrib>Chen, H.</creatorcontrib><creatorcontrib>Huang, J.</creatorcontrib><creatorcontrib>Liang, B.</creatorcontrib><creatorcontrib>Zang, N.</creatorcontrib><creatorcontrib>Liao, Y.</creatorcontrib><creatorcontrib>Chen, R.</creatorcontrib><creatorcontrib>Lai, J.</creatorcontrib><creatorcontrib>Zhou, O.</creatorcontrib><creatorcontrib>Han, J.</creatorcontrib><creatorcontrib>Liang, H.</creatorcontrib><creatorcontrib>Ye, L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Epidemiology and infection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, G.</au><au>Wei, W.</au><au>Jiang, J.</au><au>Ning, C.</au><au>Chen, H.</au><au>Huang, J.</au><au>Liang, B.</au><au>Zang, N.</au><au>Liao, Y.</au><au>Chen, R.</au><au>Lai, J.</au><au>Zhou, O.</au><au>Han, J.</au><au>Liang, H.</au><au>Ye, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a long short-term memory neural network: a burgeoning method of deep learning in forecasting HIV incidence in Guangxi, China</atitle><jtitle>Epidemiology and infection</jtitle><addtitle>Epidemiol Infect</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>147</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>e194</artnum><issn>0950-2688</issn><eissn>1469-4409</eissn><abstract>Guangxi, a province in southwestern China, has the second highest reported number of HIV/AIDS cases in China. This study aimed to develop an accurate and effective model to describe the tendency of HIV and to predict its incidence in Guangxi. HIV incidence data of Guangxi from 2005 to 2016 were obtained from the database of the Chinese Center for Disease Control and Prevention. Long short-term memory (LSTM) neural network models, autoregressive integrated moving average (ARIMA) models, generalised regression neural network (GRNN) models and exponential smoothing (ES) were used to fit the incidence data. Data from 2015 and 2016 were used to validate the most suitable models. The model performances were evaluated by evaluating metrics, including mean square error (MSE), root mean square error, mean absolute error and mean absolute percentage error. The LSTM model had the lowest MSE when the N value (time step) was 12. The most appropriate ARIMA models for incidence in 2015 and 2016 were ARIMA (1, 1, 2) (0, 1, 2)12 and ARIMA (2, 1, 0) (1, 1, 2)12, respectively. The accuracy of GRNN and ES models in forecasting HIV incidence in Guangxi was relatively poor. Four performance metrics of the LSTM model were all lower than the ARIMA, GRNN and ES models. The LSTM model was more effective than other time-series models and is important for the monitoring and control of local HIV epidemics.</abstract><cop>England</cop><pub>Cambridge University Press</pub><pmid>31364559</pmid><doi>10.1017/S095026881900075X</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7688-4867</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-2688 |
ispartof | Epidemiology and infection, 2019-01, Vol.147, p.1-7, Article e194 |
issn | 0950-2688 1469-4409 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6518582 |
source | MEDLINE; PubMed Central |
subjects | Acquired immune deficiency syndrome AIDS Autoregressive models China - epidemiology Deep Learning Disease control Disease prevention Epidemics Epidemiologic Methods Errors Forecasting Forecasting - methods HIV HIV Infections - epidemiology Human immunodeficiency virus Humans Incidence Model accuracy Neural networks Original Paper Performance measurement Preventive medicine Regression analysis Statistical analysis |
title | Application of a long short-term memory neural network: a burgeoning method of deep learning in forecasting HIV incidence in Guangxi, China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20long%20short-term%20memory%20neural%20network:%20a%20burgeoning%20method%20of%20deep%20learning%20in%20forecasting%20HIV%20incidence%20in%20Guangxi,%20China&rft.jtitle=Epidemiology%20and%20infection&rft.au=Wang,%20G.&rft.date=2019-01-01&rft.volume=147&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=e194&rft.issn=0950-2688&rft.eissn=1469-4409&rft_id=info:doi/10.1017/S095026881900075X&rft_dat=%3Cjstor_pubme%3E27023527%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221689365&rft_id=info:pmid/31364559&rft_jstor_id=27023527&rfr_iscdi=true |