High velocity domain wall propagation using voltage controlled magnetic anisotropy

The use of voltage-controlled magnetic anisotropy (VCMA) via the creation of a sloped electric field has been hailed as an energy-efficient approach for domain wall (DW) propagation. However, this method suffers from a limitation of the nanowire length which the DW can propagate on. Here, we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-05, Vol.9 (1), p.7369-7369, Article 7369
Hauptverfasser: Tan, F. N., Gan, W. L., Ang, C. C. I., Wong, G. D. H., Liu, H. X., Poh, F., Lew, W. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7369
container_issue 1
container_start_page 7369
container_title Scientific reports
container_volume 9
creator Tan, F. N.
Gan, W. L.
Ang, C. C. I.
Wong, G. D. H.
Liu, H. X.
Poh, F.
Lew, W. S.
description The use of voltage-controlled magnetic anisotropy (VCMA) via the creation of a sloped electric field has been hailed as an energy-efficient approach for domain wall (DW) propagation. However, this method suffers from a limitation of the nanowire length which the DW can propagate on. Here, we propose the use of multiplexed gate electrodes to propagate DWs on magnetic nanowires without having any length constraints. The multi-gate electrode configuration is demonstrated using micromagnetic simulations. This allows controllable voltages to be applied to neighboring gate electrodes, generating large strength of magnetic anisotropy gradients along the nanowire, and the results show that DW velocities higher than 300 m/s can be achieved. Analysis of the DW dynamics during propagation reveals that the tilt of the DW and the direction of slanted gate electrode greatly alters the steady state DW propagation. Our results show that chevron-shaped gate electrodes is an effective optimisation that leads to multi-DW propagation with high velocity. Moreover, a repeating series of high-medium-low magnetic anisotropy regions enables a deterministic VCMA-controlled high velocity DW propagation.
doi_str_mv 10.1038/s41598-019-43843-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6517393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225123494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-dbe4c0e11a7df346d07831c53de09409b4dffe940176ed16c58b03a48b2c7c9b3</originalsourceid><addsrcrecordid>eNp9kU9PHiEQxklTo8b6BTw0JL30ssoA--5yadIYW01MmjR6JiywK4aFLey--n570dd_7aFcmDC_eWaGB6EjIMdAWHuSOdSirQiIirOWs-r-A9qnhNcVZZR-fBfvocOcb0k5NRUcxC7aY0BaQYnYR7_P3XCD19ZH7eYNNnFULuA75T2eUpzUoGYXA16yCwNeRz-rwWIdw5yi99bgUQ3Bzk5jFVyO5XXafEI7vfLZHj7fB-j6x9nV6Xl1-evnxen3y0rXAHNlOss1sQCqMT3jK0OaloGumbFEcCI6bvrelgialTWw0nXbEaZ421HdaNGxA_Rtqzst3WiNtmUo5eWU3KjSRkbl5N-Z4G7kENdyVUPDBCsCX58FUvyz2DzL0WVtvVfBxiVLWn6PEA4NKeiXf9DbuKRQ1isUrYEyLnih6JbSKeacbP86DBD56JrcuiaLa_LJNXlfij6_X-O15MWjArAtkEsqDDa99f6P7APYKaUU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225123494</pqid></control><display><type>article</type><title>High velocity domain wall propagation using voltage controlled magnetic anisotropy</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Tan, F. N. ; Gan, W. L. ; Ang, C. C. I. ; Wong, G. D. H. ; Liu, H. X. ; Poh, F. ; Lew, W. S.</creator><creatorcontrib>Tan, F. N. ; Gan, W. L. ; Ang, C. C. I. ; Wong, G. D. H. ; Liu, H. X. ; Poh, F. ; Lew, W. S.</creatorcontrib><description>The use of voltage-controlled magnetic anisotropy (VCMA) via the creation of a sloped electric field has been hailed as an energy-efficient approach for domain wall (DW) propagation. However, this method suffers from a limitation of the nanowire length which the DW can propagate on. Here, we propose the use of multiplexed gate electrodes to propagate DWs on magnetic nanowires without having any length constraints. The multi-gate electrode configuration is demonstrated using micromagnetic simulations. This allows controllable voltages to be applied to neighboring gate electrodes, generating large strength of magnetic anisotropy gradients along the nanowire, and the results show that DW velocities higher than 300 m/s can be achieved. Analysis of the DW dynamics during propagation reveals that the tilt of the DW and the direction of slanted gate electrode greatly alters the steady state DW propagation. Our results show that chevron-shaped gate electrodes is an effective optimisation that leads to multi-DW propagation with high velocity. Moreover, a repeating series of high-medium-low magnetic anisotropy regions enables a deterministic VCMA-controlled high velocity DW propagation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-43843-x</identifier><identifier>PMID: 31089209</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/925/927/1007 ; 639/925/927/1062 ; Anisotropy ; Electrodes ; Energy efficiency ; Humanities and Social Sciences ; multidisciplinary ; Nanotechnology ; Nanowires ; Propagation ; Science ; Science (multidisciplinary) ; Velocity ; Voltage</subject><ispartof>Scientific reports, 2019-05, Vol.9 (1), p.7369-7369, Article 7369</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-dbe4c0e11a7df346d07831c53de09409b4dffe940176ed16c58b03a48b2c7c9b3</citedby><cites>FETCH-LOGICAL-c511t-dbe4c0e11a7df346d07831c53de09409b4dffe940176ed16c58b03a48b2c7c9b3</cites><orcidid>0000-0002-5161-741X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517393/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517393/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31089209$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, F. N.</creatorcontrib><creatorcontrib>Gan, W. L.</creatorcontrib><creatorcontrib>Ang, C. C. I.</creatorcontrib><creatorcontrib>Wong, G. D. H.</creatorcontrib><creatorcontrib>Liu, H. X.</creatorcontrib><creatorcontrib>Poh, F.</creatorcontrib><creatorcontrib>Lew, W. S.</creatorcontrib><title>High velocity domain wall propagation using voltage controlled magnetic anisotropy</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The use of voltage-controlled magnetic anisotropy (VCMA) via the creation of a sloped electric field has been hailed as an energy-efficient approach for domain wall (DW) propagation. However, this method suffers from a limitation of the nanowire length which the DW can propagate on. Here, we propose the use of multiplexed gate electrodes to propagate DWs on magnetic nanowires without having any length constraints. The multi-gate electrode configuration is demonstrated using micromagnetic simulations. This allows controllable voltages to be applied to neighboring gate electrodes, generating large strength of magnetic anisotropy gradients along the nanowire, and the results show that DW velocities higher than 300 m/s can be achieved. Analysis of the DW dynamics during propagation reveals that the tilt of the DW and the direction of slanted gate electrode greatly alters the steady state DW propagation. Our results show that chevron-shaped gate electrodes is an effective optimisation that leads to multi-DW propagation with high velocity. Moreover, a repeating series of high-medium-low magnetic anisotropy regions enables a deterministic VCMA-controlled high velocity DW propagation.</description><subject>639/925/927/1007</subject><subject>639/925/927/1062</subject><subject>Anisotropy</subject><subject>Electrodes</subject><subject>Energy efficiency</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Propagation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Velocity</subject><subject>Voltage</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9PHiEQxklTo8b6BTw0JL30ssoA--5yadIYW01MmjR6JiywK4aFLey--n570dd_7aFcmDC_eWaGB6EjIMdAWHuSOdSirQiIirOWs-r-A9qnhNcVZZR-fBfvocOcb0k5NRUcxC7aY0BaQYnYR7_P3XCD19ZH7eYNNnFULuA75T2eUpzUoGYXA16yCwNeRz-rwWIdw5yi99bgUQ3Bzk5jFVyO5XXafEI7vfLZHj7fB-j6x9nV6Xl1-evnxen3y0rXAHNlOss1sQCqMT3jK0OaloGumbFEcCI6bvrelgialTWw0nXbEaZ421HdaNGxA_Rtqzst3WiNtmUo5eWU3KjSRkbl5N-Z4G7kENdyVUPDBCsCX58FUvyz2DzL0WVtvVfBxiVLWn6PEA4NKeiXf9DbuKRQ1isUrYEyLnih6JbSKeacbP86DBD56JrcuiaLa_LJNXlfij6_X-O15MWjArAtkEsqDDa99f6P7APYKaUU</recordid><startdate>20190514</startdate><enddate>20190514</enddate><creator>Tan, F. N.</creator><creator>Gan, W. L.</creator><creator>Ang, C. C. I.</creator><creator>Wong, G. D. H.</creator><creator>Liu, H. X.</creator><creator>Poh, F.</creator><creator>Lew, W. S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5161-741X</orcidid></search><sort><creationdate>20190514</creationdate><title>High velocity domain wall propagation using voltage controlled magnetic anisotropy</title><author>Tan, F. N. ; Gan, W. L. ; Ang, C. C. I. ; Wong, G. D. H. ; Liu, H. X. ; Poh, F. ; Lew, W. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-dbe4c0e11a7df346d07831c53de09409b4dffe940176ed16c58b03a48b2c7c9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/925/927/1007</topic><topic>639/925/927/1062</topic><topic>Anisotropy</topic><topic>Electrodes</topic><topic>Energy efficiency</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Propagation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Velocity</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, F. N.</creatorcontrib><creatorcontrib>Gan, W. L.</creatorcontrib><creatorcontrib>Ang, C. C. I.</creatorcontrib><creatorcontrib>Wong, G. D. H.</creatorcontrib><creatorcontrib>Liu, H. X.</creatorcontrib><creatorcontrib>Poh, F.</creatorcontrib><creatorcontrib>Lew, W. S.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, F. N.</au><au>Gan, W. L.</au><au>Ang, C. C. I.</au><au>Wong, G. D. H.</au><au>Liu, H. X.</au><au>Poh, F.</au><au>Lew, W. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High velocity domain wall propagation using voltage controlled magnetic anisotropy</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-05-14</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>7369</spage><epage>7369</epage><pages>7369-7369</pages><artnum>7369</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The use of voltage-controlled magnetic anisotropy (VCMA) via the creation of a sloped electric field has been hailed as an energy-efficient approach for domain wall (DW) propagation. However, this method suffers from a limitation of the nanowire length which the DW can propagate on. Here, we propose the use of multiplexed gate electrodes to propagate DWs on magnetic nanowires without having any length constraints. The multi-gate electrode configuration is demonstrated using micromagnetic simulations. This allows controllable voltages to be applied to neighboring gate electrodes, generating large strength of magnetic anisotropy gradients along the nanowire, and the results show that DW velocities higher than 300 m/s can be achieved. Analysis of the DW dynamics during propagation reveals that the tilt of the DW and the direction of slanted gate electrode greatly alters the steady state DW propagation. Our results show that chevron-shaped gate electrodes is an effective optimisation that leads to multi-DW propagation with high velocity. Moreover, a repeating series of high-medium-low magnetic anisotropy regions enables a deterministic VCMA-controlled high velocity DW propagation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31089209</pmid><doi>10.1038/s41598-019-43843-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5161-741X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-05, Vol.9 (1), p.7369-7369, Article 7369
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6517393
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 639/925/927/1007
639/925/927/1062
Anisotropy
Electrodes
Energy efficiency
Humanities and Social Sciences
multidisciplinary
Nanotechnology
Nanowires
Propagation
Science
Science (multidisciplinary)
Velocity
Voltage
title High velocity domain wall propagation using voltage controlled magnetic anisotropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20velocity%20domain%20wall%20propagation%20using%20voltage%20controlled%20magnetic%20anisotropy&rft.jtitle=Scientific%20reports&rft.au=Tan,%20F.%20N.&rft.date=2019-05-14&rft.volume=9&rft.issue=1&rft.spage=7369&rft.epage=7369&rft.pages=7369-7369&rft.artnum=7369&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-43843-x&rft_dat=%3Cproquest_pubme%3E2225123494%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225123494&rft_id=info:pmid/31089209&rfr_iscdi=true