mTORC1 underlies age‐related muscle fiber damage and loss by inducing oxidative stress and catabolism
Aging leads to skeletal muscle atrophy (i.e., sarcopenia), and muscle fiber loss is a critical component of this process. The mechanisms underlying these age‐related changes, however, remain unclear. We show here that mTORC1 signaling is activated in a subset of skeletal muscle fibers in aging mouse...
Gespeichert in:
Veröffentlicht in: | Aging cell 2019-06, Vol.18 (3), p.e12943-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e12943 |
container_title | Aging cell |
container_volume | 18 |
creator | Tang, Huibin Inoki, Ken Brooks, Susan V. Okazawa, Hideki Lee, Myung Wang, Junying Kim, Michael Kennedy, Catherine L. Macpherson, Peter C. D. Ji, Xuhuai Van Roekel, Sabrina Fraga, Danielle A. Wang, Kun Zhu, Jinguo Wang, Yoyo Sharp, Zelton D. Miller, Richard A. Rando, Thomas A. Goldman, Daniel Guan, Kun‐Liang Shrager, Joseph B. |
description | Aging leads to skeletal muscle atrophy (i.e., sarcopenia), and muscle fiber loss is a critical component of this process. The mechanisms underlying these age‐related changes, however, remain unclear. We show here that mTORC1 signaling is activated in a subset of skeletal muscle fibers in aging mouse and human, colocalized with fiber damage. Activation of mTORC1 in TSC1 knockout mouse muscle fibers increases the content of morphologically abnormal mitochondria and causes progressive oxidative stress, fiber damage, and fiber loss over the lifespan. Transcriptomic profiling reveals that mTORC1's activation increases the expression of growth differentiation factors (GDF3, 5, and 15), and of genes involved in mitochondrial oxidative stress and catabolism. We show that increased GDF15 is sufficient to induce oxidative stress and catabolic changes, and that mTORC1 increases the expression of GDF15 via phosphorylation of STAT3. Inhibition of mTORC1 in aging mouse decreases the expression of GDFs and STAT3's phosphorylation in skeletal muscle, reducing oxidative stress and muscle fiber damage and loss. Thus, chronically increased mTORC1 activity contributes to age‐related muscle atrophy, and GDF signaling is a proposed mechanism. |
doi_str_mv | 10.1111/acel.12943 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6516169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707859794</galeid><sourcerecordid>A707859794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5813-e2168101a6212d6ad1d3b7e1b7fb295c1a43d329e7286912468e79d72f948c573</originalsourceid><addsrcrecordid>eNp9ktuKFDEQhoMo7jp64wNIwBsRZsyhO4cbYRjWAwwsyHod0kl1m6U7vSbdu86dj-Az-iRmnHV0RUwuElJf_UVVfoSeUrKiZb2yDvoVZbri99AprWS11JKJ-8c7VSfoUc6XhFCpCX-ITjjRrGJanqJuuDj_sKF4jh5SHyBj28H3r98S9HYCj4c5ux5wGxpI2NuhRLGNHvdjzrjZ4RD97ELs8PgleDuFa8B5SlCCe8rZyTZjH_LwGD1obZ_hye25QB_fnF1s3i2352_fb9bbpasV5UtgVChKqBWMMi-sp543Emgj24bp2lFbcc-ZBsmU0JRVQoHUXrJWV8rVki_Q64Pu1dwM4B3EKdneXKUw2LQzow3mbiSGT6Ybr42oqaBCF4EXtwJp_DxDnswQchlwbyOMczaMESIlI7wu6PO_0MtxTrG0VyhWcaGkUr-pzvZgQmzHUtftRc1aEqlqLcvPLdDqH1TZHobgxghtKO93El4eElwqX5GgPfZIidnbwuxtYX7aosDP_pzKEf3lgwLQA3BTyuz-I2XWm7PtQfQHrGjB1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224368788</pqid></control><display><type>article</type><title>mTORC1 underlies age‐related muscle fiber damage and loss by inducing oxidative stress and catabolism</title><source>DOAJ, Directory of Open Access Journals</source><source>PubMed Central (Open Access)</source><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Tang, Huibin ; Inoki, Ken ; Brooks, Susan V. ; Okazawa, Hideki ; Lee, Myung ; Wang, Junying ; Kim, Michael ; Kennedy, Catherine L. ; Macpherson, Peter C. D. ; Ji, Xuhuai ; Van Roekel, Sabrina ; Fraga, Danielle A. ; Wang, Kun ; Zhu, Jinguo ; Wang, Yoyo ; Sharp, Zelton D. ; Miller, Richard A. ; Rando, Thomas A. ; Goldman, Daniel ; Guan, Kun‐Liang ; Shrager, Joseph B.</creator><creatorcontrib>Tang, Huibin ; Inoki, Ken ; Brooks, Susan V. ; Okazawa, Hideki ; Lee, Myung ; Wang, Junying ; Kim, Michael ; Kennedy, Catherine L. ; Macpherson, Peter C. D. ; Ji, Xuhuai ; Van Roekel, Sabrina ; Fraga, Danielle A. ; Wang, Kun ; Zhu, Jinguo ; Wang, Yoyo ; Sharp, Zelton D. ; Miller, Richard A. ; Rando, Thomas A. ; Goldman, Daniel ; Guan, Kun‐Liang ; Shrager, Joseph B.</creatorcontrib><description>Aging leads to skeletal muscle atrophy (i.e., sarcopenia), and muscle fiber loss is a critical component of this process. The mechanisms underlying these age‐related changes, however, remain unclear. We show here that mTORC1 signaling is activated in a subset of skeletal muscle fibers in aging mouse and human, colocalized with fiber damage. Activation of mTORC1 in TSC1 knockout mouse muscle fibers increases the content of morphologically abnormal mitochondria and causes progressive oxidative stress, fiber damage, and fiber loss over the lifespan. Transcriptomic profiling reveals that mTORC1's activation increases the expression of growth differentiation factors (GDF3, 5, and 15), and of genes involved in mitochondrial oxidative stress and catabolism. We show that increased GDF15 is sufficient to induce oxidative stress and catabolic changes, and that mTORC1 increases the expression of GDF15 via phosphorylation of STAT3. Inhibition of mTORC1 in aging mouse decreases the expression of GDFs and STAT3's phosphorylation in skeletal muscle, reducing oxidative stress and muscle fiber damage and loss. Thus, chronically increased mTORC1 activity contributes to age‐related muscle atrophy, and GDF signaling is a proposed mechanism.</description><identifier>ISSN: 1474-9718</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.12943</identifier><identifier>PMID: 30924297</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Aging ; Aging - metabolism ; Animals ; Atrophy ; Cells, Cultured ; Humans ; Life span ; Mechanistic Target of Rapamycin Complex 1 - antagonists & inhibitors ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Mitochondria ; mTORC1 ; Muscle Fibers, Skeletal - metabolism ; Muscle Fibers, Skeletal - pathology ; Muscles ; Musculoskeletal system ; Original Paper ; Original Papers ; Oxidative Stress ; Phosphorylation ; Sarcopenia ; signal transduction ; Skeletal muscle ; Stat3 protein ; Tuberous Sclerosis Complex 1 ; Tuberous Sclerosis Complex 1 Protein - deficiency ; Tuberous Sclerosis Complex 1 Protein - metabolism</subject><ispartof>Aging cell, 2019-06, Vol.18 (3), p.e12943-n/a</ispartof><rights>2019 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd.</rights><rights>2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.</rights><rights>COPYRIGHT 2019 John Wiley & Sons, Inc.</rights><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5813-e2168101a6212d6ad1d3b7e1b7fb295c1a43d329e7286912468e79d72f948c573</citedby><cites>FETCH-LOGICAL-c5813-e2168101a6212d6ad1d3b7e1b7fb295c1a43d329e7286912468e79d72f948c573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516169/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516169/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30924297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Huibin</creatorcontrib><creatorcontrib>Inoki, Ken</creatorcontrib><creatorcontrib>Brooks, Susan V.</creatorcontrib><creatorcontrib>Okazawa, Hideki</creatorcontrib><creatorcontrib>Lee, Myung</creatorcontrib><creatorcontrib>Wang, Junying</creatorcontrib><creatorcontrib>Kim, Michael</creatorcontrib><creatorcontrib>Kennedy, Catherine L.</creatorcontrib><creatorcontrib>Macpherson, Peter C. D.</creatorcontrib><creatorcontrib>Ji, Xuhuai</creatorcontrib><creatorcontrib>Van Roekel, Sabrina</creatorcontrib><creatorcontrib>Fraga, Danielle A.</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Zhu, Jinguo</creatorcontrib><creatorcontrib>Wang, Yoyo</creatorcontrib><creatorcontrib>Sharp, Zelton D.</creatorcontrib><creatorcontrib>Miller, Richard A.</creatorcontrib><creatorcontrib>Rando, Thomas A.</creatorcontrib><creatorcontrib>Goldman, Daniel</creatorcontrib><creatorcontrib>Guan, Kun‐Liang</creatorcontrib><creatorcontrib>Shrager, Joseph B.</creatorcontrib><title>mTORC1 underlies age‐related muscle fiber damage and loss by inducing oxidative stress and catabolism</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Aging leads to skeletal muscle atrophy (i.e., sarcopenia), and muscle fiber loss is a critical component of this process. The mechanisms underlying these age‐related changes, however, remain unclear. We show here that mTORC1 signaling is activated in a subset of skeletal muscle fibers in aging mouse and human, colocalized with fiber damage. Activation of mTORC1 in TSC1 knockout mouse muscle fibers increases the content of morphologically abnormal mitochondria and causes progressive oxidative stress, fiber damage, and fiber loss over the lifespan. Transcriptomic profiling reveals that mTORC1's activation increases the expression of growth differentiation factors (GDF3, 5, and 15), and of genes involved in mitochondrial oxidative stress and catabolism. We show that increased GDF15 is sufficient to induce oxidative stress and catabolic changes, and that mTORC1 increases the expression of GDF15 via phosphorylation of STAT3. Inhibition of mTORC1 in aging mouse decreases the expression of GDFs and STAT3's phosphorylation in skeletal muscle, reducing oxidative stress and muscle fiber damage and loss. Thus, chronically increased mTORC1 activity contributes to age‐related muscle atrophy, and GDF signaling is a proposed mechanism.</description><subject>Aging</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Cells, Cultured</subject><subject>Humans</subject><subject>Life span</subject><subject>Mechanistic Target of Rapamycin Complex 1 - antagonists & inhibitors</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Mitochondria</subject><subject>mTORC1</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle Fibers, Skeletal - pathology</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Original Paper</subject><subject>Original Papers</subject><subject>Oxidative Stress</subject><subject>Phosphorylation</subject><subject>Sarcopenia</subject><subject>signal transduction</subject><subject>Skeletal muscle</subject><subject>Stat3 protein</subject><subject>Tuberous Sclerosis Complex 1</subject><subject>Tuberous Sclerosis Complex 1 Protein - deficiency</subject><subject>Tuberous Sclerosis Complex 1 Protein - metabolism</subject><issn>1474-9718</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ktuKFDEQhoMo7jp64wNIwBsRZsyhO4cbYRjWAwwsyHod0kl1m6U7vSbdu86dj-Az-iRmnHV0RUwuElJf_UVVfoSeUrKiZb2yDvoVZbri99AprWS11JKJ-8c7VSfoUc6XhFCpCX-ITjjRrGJanqJuuDj_sKF4jh5SHyBj28H3r98S9HYCj4c5ux5wGxpI2NuhRLGNHvdjzrjZ4RD97ELs8PgleDuFa8B5SlCCe8rZyTZjH_LwGD1obZ_hye25QB_fnF1s3i2352_fb9bbpasV5UtgVChKqBWMMi-sp543Emgj24bp2lFbcc-ZBsmU0JRVQoHUXrJWV8rVki_Q64Pu1dwM4B3EKdneXKUw2LQzow3mbiSGT6Ybr42oqaBCF4EXtwJp_DxDnswQchlwbyOMczaMESIlI7wu6PO_0MtxTrG0VyhWcaGkUr-pzvZgQmzHUtftRc1aEqlqLcvPLdDqH1TZHobgxghtKO93El4eElwqX5GgPfZIidnbwuxtYX7aosDP_pzKEf3lgwLQA3BTyuz-I2XWm7PtQfQHrGjB1w</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Tang, Huibin</creator><creator>Inoki, Ken</creator><creator>Brooks, Susan V.</creator><creator>Okazawa, Hideki</creator><creator>Lee, Myung</creator><creator>Wang, Junying</creator><creator>Kim, Michael</creator><creator>Kennedy, Catherine L.</creator><creator>Macpherson, Peter C. D.</creator><creator>Ji, Xuhuai</creator><creator>Van Roekel, Sabrina</creator><creator>Fraga, Danielle A.</creator><creator>Wang, Kun</creator><creator>Zhu, Jinguo</creator><creator>Wang, Yoyo</creator><creator>Sharp, Zelton D.</creator><creator>Miller, Richard A.</creator><creator>Rando, Thomas A.</creator><creator>Goldman, Daniel</creator><creator>Guan, Kun‐Liang</creator><creator>Shrager, Joseph B.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201906</creationdate><title>mTORC1 underlies age‐related muscle fiber damage and loss by inducing oxidative stress and catabolism</title><author>Tang, Huibin ; Inoki, Ken ; Brooks, Susan V. ; Okazawa, Hideki ; Lee, Myung ; Wang, Junying ; Kim, Michael ; Kennedy, Catherine L. ; Macpherson, Peter C. D. ; Ji, Xuhuai ; Van Roekel, Sabrina ; Fraga, Danielle A. ; Wang, Kun ; Zhu, Jinguo ; Wang, Yoyo ; Sharp, Zelton D. ; Miller, Richard A. ; Rando, Thomas A. ; Goldman, Daniel ; Guan, Kun‐Liang ; Shrager, Joseph B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5813-e2168101a6212d6ad1d3b7e1b7fb295c1a43d329e7286912468e79d72f948c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Cells, Cultured</topic><topic>Humans</topic><topic>Life span</topic><topic>Mechanistic Target of Rapamycin Complex 1 - antagonists & inhibitors</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Mitochondria</topic><topic>mTORC1</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle Fibers, Skeletal - pathology</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Original Paper</topic><topic>Original Papers</topic><topic>Oxidative Stress</topic><topic>Phosphorylation</topic><topic>Sarcopenia</topic><topic>signal transduction</topic><topic>Skeletal muscle</topic><topic>Stat3 protein</topic><topic>Tuberous Sclerosis Complex 1</topic><topic>Tuberous Sclerosis Complex 1 Protein - deficiency</topic><topic>Tuberous Sclerosis Complex 1 Protein - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Huibin</creatorcontrib><creatorcontrib>Inoki, Ken</creatorcontrib><creatorcontrib>Brooks, Susan V.</creatorcontrib><creatorcontrib>Okazawa, Hideki</creatorcontrib><creatorcontrib>Lee, Myung</creatorcontrib><creatorcontrib>Wang, Junying</creatorcontrib><creatorcontrib>Kim, Michael</creatorcontrib><creatorcontrib>Kennedy, Catherine L.</creatorcontrib><creatorcontrib>Macpherson, Peter C. D.</creatorcontrib><creatorcontrib>Ji, Xuhuai</creatorcontrib><creatorcontrib>Van Roekel, Sabrina</creatorcontrib><creatorcontrib>Fraga, Danielle A.</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Zhu, Jinguo</creatorcontrib><creatorcontrib>Wang, Yoyo</creatorcontrib><creatorcontrib>Sharp, Zelton D.</creatorcontrib><creatorcontrib>Miller, Richard A.</creatorcontrib><creatorcontrib>Rando, Thomas A.</creatorcontrib><creatorcontrib>Goldman, Daniel</creatorcontrib><creatorcontrib>Guan, Kun‐Liang</creatorcontrib><creatorcontrib>Shrager, Joseph B.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Huibin</au><au>Inoki, Ken</au><au>Brooks, Susan V.</au><au>Okazawa, Hideki</au><au>Lee, Myung</au><au>Wang, Junying</au><au>Kim, Michael</au><au>Kennedy, Catherine L.</au><au>Macpherson, Peter C. D.</au><au>Ji, Xuhuai</au><au>Van Roekel, Sabrina</au><au>Fraga, Danielle A.</au><au>Wang, Kun</au><au>Zhu, Jinguo</au><au>Wang, Yoyo</au><au>Sharp, Zelton D.</au><au>Miller, Richard A.</au><au>Rando, Thomas A.</au><au>Goldman, Daniel</au><au>Guan, Kun‐Liang</au><au>Shrager, Joseph B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTORC1 underlies age‐related muscle fiber damage and loss by inducing oxidative stress and catabolism</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2019-06</date><risdate>2019</risdate><volume>18</volume><issue>3</issue><spage>e12943</spage><epage>n/a</epage><pages>e12943-n/a</pages><issn>1474-9718</issn><eissn>1474-9726</eissn><abstract>Aging leads to skeletal muscle atrophy (i.e., sarcopenia), and muscle fiber loss is a critical component of this process. The mechanisms underlying these age‐related changes, however, remain unclear. We show here that mTORC1 signaling is activated in a subset of skeletal muscle fibers in aging mouse and human, colocalized with fiber damage. Activation of mTORC1 in TSC1 knockout mouse muscle fibers increases the content of morphologically abnormal mitochondria and causes progressive oxidative stress, fiber damage, and fiber loss over the lifespan. Transcriptomic profiling reveals that mTORC1's activation increases the expression of growth differentiation factors (GDF3, 5, and 15), and of genes involved in mitochondrial oxidative stress and catabolism. We show that increased GDF15 is sufficient to induce oxidative stress and catabolic changes, and that mTORC1 increases the expression of GDF15 via phosphorylation of STAT3. Inhibition of mTORC1 in aging mouse decreases the expression of GDFs and STAT3's phosphorylation in skeletal muscle, reducing oxidative stress and muscle fiber damage and loss. Thus, chronically increased mTORC1 activity contributes to age‐related muscle atrophy, and GDF signaling is a proposed mechanism.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>30924297</pmid><doi>10.1111/acel.12943</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1474-9718 |
ispartof | Aging cell, 2019-06, Vol.18 (3), p.e12943-n/a |
issn | 1474-9718 1474-9726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6516169 |
source | DOAJ, Directory of Open Access Journals; PubMed Central (Open Access); Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Open Access; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Aging Aging - metabolism Animals Atrophy Cells, Cultured Humans Life span Mechanistic Target of Rapamycin Complex 1 - antagonists & inhibitors Mechanistic Target of Rapamycin Complex 1 - metabolism Mice Mice, Knockout Mice, Transgenic Mitochondria mTORC1 Muscle Fibers, Skeletal - metabolism Muscle Fibers, Skeletal - pathology Muscles Musculoskeletal system Original Paper Original Papers Oxidative Stress Phosphorylation Sarcopenia signal transduction Skeletal muscle Stat3 protein Tuberous Sclerosis Complex 1 Tuberous Sclerosis Complex 1 Protein - deficiency Tuberous Sclerosis Complex 1 Protein - metabolism |
title | mTORC1 underlies age‐related muscle fiber damage and loss by inducing oxidative stress and catabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTORC1%20underlies%20age%E2%80%90related%20muscle%20fiber%20damage%20and%20loss%20by%20inducing%20oxidative%20stress%20and%20catabolism&rft.jtitle=Aging%20cell&rft.au=Tang,%20Huibin&rft.date=2019-06&rft.volume=18&rft.issue=3&rft.spage=e12943&rft.epage=n/a&rft.pages=e12943-n/a&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.12943&rft_dat=%3Cgale_pubme%3EA707859794%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2224368788&rft_id=info:pmid/30924297&rft_galeid=A707859794&rfr_iscdi=true |