mTORC1 underlies age‐related muscle fiber damage and loss by inducing oxidative stress and catabolism

Aging leads to skeletal muscle atrophy (i.e., sarcopenia), and muscle fiber loss is a critical component of this process. The mechanisms underlying these age‐related changes, however, remain unclear. We show here that mTORC1 signaling is activated in a subset of skeletal muscle fibers in aging mouse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging cell 2019-06, Vol.18 (3), p.e12943-n/a
Hauptverfasser: Tang, Huibin, Inoki, Ken, Brooks, Susan V., Okazawa, Hideki, Lee, Myung, Wang, Junying, Kim, Michael, Kennedy, Catherine L., Macpherson, Peter C. D., Ji, Xuhuai, Van Roekel, Sabrina, Fraga, Danielle A., Wang, Kun, Zhu, Jinguo, Wang, Yoyo, Sharp, Zelton D., Miller, Richard A., Rando, Thomas A., Goldman, Daniel, Guan, Kun‐Liang, Shrager, Joseph B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e12943
container_title Aging cell
container_volume 18
creator Tang, Huibin
Inoki, Ken
Brooks, Susan V.
Okazawa, Hideki
Lee, Myung
Wang, Junying
Kim, Michael
Kennedy, Catherine L.
Macpherson, Peter C. D.
Ji, Xuhuai
Van Roekel, Sabrina
Fraga, Danielle A.
Wang, Kun
Zhu, Jinguo
Wang, Yoyo
Sharp, Zelton D.
Miller, Richard A.
Rando, Thomas A.
Goldman, Daniel
Guan, Kun‐Liang
Shrager, Joseph B.
description Aging leads to skeletal muscle atrophy (i.e., sarcopenia), and muscle fiber loss is a critical component of this process. The mechanisms underlying these age‐related changes, however, remain unclear. We show here that mTORC1 signaling is activated in a subset of skeletal muscle fibers in aging mouse and human, colocalized with fiber damage. Activation of mTORC1 in TSC1 knockout mouse muscle fibers increases the content of morphologically abnormal mitochondria and causes progressive oxidative stress, fiber damage, and fiber loss over the lifespan. Transcriptomic profiling reveals that mTORC1's activation increases the expression of growth differentiation factors (GDF3, 5, and 15), and of genes involved in mitochondrial oxidative stress and catabolism. We show that increased GDF15 is sufficient to induce oxidative stress and catabolic changes, and that mTORC1 increases the expression of GDF15 via phosphorylation of STAT3. Inhibition of mTORC1 in aging mouse decreases the expression of GDFs and STAT3's phosphorylation in skeletal muscle, reducing oxidative stress and muscle fiber damage and loss. Thus, chronically increased mTORC1 activity contributes to age‐related muscle atrophy, and GDF signaling is a proposed mechanism.
doi_str_mv 10.1111/acel.12943
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6516169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707859794</galeid><sourcerecordid>A707859794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5813-e2168101a6212d6ad1d3b7e1b7fb295c1a43d329e7286912468e79d72f948c573</originalsourceid><addsrcrecordid>eNp9ktuKFDEQhoMo7jp64wNIwBsRZsyhO4cbYRjWAwwsyHod0kl1m6U7vSbdu86dj-Az-iRmnHV0RUwuElJf_UVVfoSeUrKiZb2yDvoVZbri99AprWS11JKJ-8c7VSfoUc6XhFCpCX-ITjjRrGJanqJuuDj_sKF4jh5SHyBj28H3r98S9HYCj4c5ux5wGxpI2NuhRLGNHvdjzrjZ4RD97ELs8PgleDuFa8B5SlCCe8rZyTZjH_LwGD1obZ_hye25QB_fnF1s3i2352_fb9bbpasV5UtgVChKqBWMMi-sp543Emgj24bp2lFbcc-ZBsmU0JRVQoHUXrJWV8rVki_Q64Pu1dwM4B3EKdneXKUw2LQzow3mbiSGT6Ybr42oqaBCF4EXtwJp_DxDnswQchlwbyOMczaMESIlI7wu6PO_0MtxTrG0VyhWcaGkUr-pzvZgQmzHUtftRc1aEqlqLcvPLdDqH1TZHobgxghtKO93El4eElwqX5GgPfZIidnbwuxtYX7aosDP_pzKEf3lgwLQA3BTyuz-I2XWm7PtQfQHrGjB1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224368788</pqid></control><display><type>article</type><title>mTORC1 underlies age‐related muscle fiber damage and loss by inducing oxidative stress and catabolism</title><source>DOAJ, Directory of Open Access Journals</source><source>PubMed Central (Open Access)</source><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Tang, Huibin ; Inoki, Ken ; Brooks, Susan V. ; Okazawa, Hideki ; Lee, Myung ; Wang, Junying ; Kim, Michael ; Kennedy, Catherine L. ; Macpherson, Peter C. D. ; Ji, Xuhuai ; Van Roekel, Sabrina ; Fraga, Danielle A. ; Wang, Kun ; Zhu, Jinguo ; Wang, Yoyo ; Sharp, Zelton D. ; Miller, Richard A. ; Rando, Thomas A. ; Goldman, Daniel ; Guan, Kun‐Liang ; Shrager, Joseph B.</creator><creatorcontrib>Tang, Huibin ; Inoki, Ken ; Brooks, Susan V. ; Okazawa, Hideki ; Lee, Myung ; Wang, Junying ; Kim, Michael ; Kennedy, Catherine L. ; Macpherson, Peter C. D. ; Ji, Xuhuai ; Van Roekel, Sabrina ; Fraga, Danielle A. ; Wang, Kun ; Zhu, Jinguo ; Wang, Yoyo ; Sharp, Zelton D. ; Miller, Richard A. ; Rando, Thomas A. ; Goldman, Daniel ; Guan, Kun‐Liang ; Shrager, Joseph B.</creatorcontrib><description>Aging leads to skeletal muscle atrophy (i.e., sarcopenia), and muscle fiber loss is a critical component of this process. The mechanisms underlying these age‐related changes, however, remain unclear. We show here that mTORC1 signaling is activated in a subset of skeletal muscle fibers in aging mouse and human, colocalized with fiber damage. Activation of mTORC1 in TSC1 knockout mouse muscle fibers increases the content of morphologically abnormal mitochondria and causes progressive oxidative stress, fiber damage, and fiber loss over the lifespan. Transcriptomic profiling reveals that mTORC1's activation increases the expression of growth differentiation factors (GDF3, 5, and 15), and of genes involved in mitochondrial oxidative stress and catabolism. We show that increased GDF15 is sufficient to induce oxidative stress and catabolic changes, and that mTORC1 increases the expression of GDF15 via phosphorylation of STAT3. Inhibition of mTORC1 in aging mouse decreases the expression of GDFs and STAT3's phosphorylation in skeletal muscle, reducing oxidative stress and muscle fiber damage and loss. Thus, chronically increased mTORC1 activity contributes to age‐related muscle atrophy, and GDF signaling is a proposed mechanism.</description><identifier>ISSN: 1474-9718</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.12943</identifier><identifier>PMID: 30924297</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Aging ; Aging - metabolism ; Animals ; Atrophy ; Cells, Cultured ; Humans ; Life span ; Mechanistic Target of Rapamycin Complex 1 - antagonists &amp; inhibitors ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Mitochondria ; mTORC1 ; Muscle Fibers, Skeletal - metabolism ; Muscle Fibers, Skeletal - pathology ; Muscles ; Musculoskeletal system ; Original Paper ; Original Papers ; Oxidative Stress ; Phosphorylation ; Sarcopenia ; signal transduction ; Skeletal muscle ; Stat3 protein ; Tuberous Sclerosis Complex 1 ; Tuberous Sclerosis Complex 1 Protein - deficiency ; Tuberous Sclerosis Complex 1 Protein - metabolism</subject><ispartof>Aging cell, 2019-06, Vol.18 (3), p.e12943-n/a</ispartof><rights>2019 The Authors. published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2019 John Wiley &amp; Sons, Inc.</rights><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5813-e2168101a6212d6ad1d3b7e1b7fb295c1a43d329e7286912468e79d72f948c573</citedby><cites>FETCH-LOGICAL-c5813-e2168101a6212d6ad1d3b7e1b7fb295c1a43d329e7286912468e79d72f948c573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516169/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516169/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30924297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Huibin</creatorcontrib><creatorcontrib>Inoki, Ken</creatorcontrib><creatorcontrib>Brooks, Susan V.</creatorcontrib><creatorcontrib>Okazawa, Hideki</creatorcontrib><creatorcontrib>Lee, Myung</creatorcontrib><creatorcontrib>Wang, Junying</creatorcontrib><creatorcontrib>Kim, Michael</creatorcontrib><creatorcontrib>Kennedy, Catherine L.</creatorcontrib><creatorcontrib>Macpherson, Peter C. D.</creatorcontrib><creatorcontrib>Ji, Xuhuai</creatorcontrib><creatorcontrib>Van Roekel, Sabrina</creatorcontrib><creatorcontrib>Fraga, Danielle A.</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Zhu, Jinguo</creatorcontrib><creatorcontrib>Wang, Yoyo</creatorcontrib><creatorcontrib>Sharp, Zelton D.</creatorcontrib><creatorcontrib>Miller, Richard A.</creatorcontrib><creatorcontrib>Rando, Thomas A.</creatorcontrib><creatorcontrib>Goldman, Daniel</creatorcontrib><creatorcontrib>Guan, Kun‐Liang</creatorcontrib><creatorcontrib>Shrager, Joseph B.</creatorcontrib><title>mTORC1 underlies age‐related muscle fiber damage and loss by inducing oxidative stress and catabolism</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Aging leads to skeletal muscle atrophy (i.e., sarcopenia), and muscle fiber loss is a critical component of this process. The mechanisms underlying these age‐related changes, however, remain unclear. We show here that mTORC1 signaling is activated in a subset of skeletal muscle fibers in aging mouse and human, colocalized with fiber damage. Activation of mTORC1 in TSC1 knockout mouse muscle fibers increases the content of morphologically abnormal mitochondria and causes progressive oxidative stress, fiber damage, and fiber loss over the lifespan. Transcriptomic profiling reveals that mTORC1's activation increases the expression of growth differentiation factors (GDF3, 5, and 15), and of genes involved in mitochondrial oxidative stress and catabolism. We show that increased GDF15 is sufficient to induce oxidative stress and catabolic changes, and that mTORC1 increases the expression of GDF15 via phosphorylation of STAT3. Inhibition of mTORC1 in aging mouse decreases the expression of GDFs and STAT3's phosphorylation in skeletal muscle, reducing oxidative stress and muscle fiber damage and loss. Thus, chronically increased mTORC1 activity contributes to age‐related muscle atrophy, and GDF signaling is a proposed mechanism.</description><subject>Aging</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Cells, Cultured</subject><subject>Humans</subject><subject>Life span</subject><subject>Mechanistic Target of Rapamycin Complex 1 - antagonists &amp; inhibitors</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Mitochondria</subject><subject>mTORC1</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle Fibers, Skeletal - pathology</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Original Paper</subject><subject>Original Papers</subject><subject>Oxidative Stress</subject><subject>Phosphorylation</subject><subject>Sarcopenia</subject><subject>signal transduction</subject><subject>Skeletal muscle</subject><subject>Stat3 protein</subject><subject>Tuberous Sclerosis Complex 1</subject><subject>Tuberous Sclerosis Complex 1 Protein - deficiency</subject><subject>Tuberous Sclerosis Complex 1 Protein - metabolism</subject><issn>1474-9718</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ktuKFDEQhoMo7jp64wNIwBsRZsyhO4cbYRjWAwwsyHod0kl1m6U7vSbdu86dj-Az-iRmnHV0RUwuElJf_UVVfoSeUrKiZb2yDvoVZbri99AprWS11JKJ-8c7VSfoUc6XhFCpCX-ITjjRrGJanqJuuDj_sKF4jh5SHyBj28H3r98S9HYCj4c5ux5wGxpI2NuhRLGNHvdjzrjZ4RD97ELs8PgleDuFa8B5SlCCe8rZyTZjH_LwGD1obZ_hye25QB_fnF1s3i2352_fb9bbpasV5UtgVChKqBWMMi-sp543Emgj24bp2lFbcc-ZBsmU0JRVQoHUXrJWV8rVki_Q64Pu1dwM4B3EKdneXKUw2LQzow3mbiSGT6Ybr42oqaBCF4EXtwJp_DxDnswQchlwbyOMczaMESIlI7wu6PO_0MtxTrG0VyhWcaGkUr-pzvZgQmzHUtftRc1aEqlqLcvPLdDqH1TZHobgxghtKO93El4eElwqX5GgPfZIidnbwuxtYX7aosDP_pzKEf3lgwLQA3BTyuz-I2XWm7PtQfQHrGjB1w</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Tang, Huibin</creator><creator>Inoki, Ken</creator><creator>Brooks, Susan V.</creator><creator>Okazawa, Hideki</creator><creator>Lee, Myung</creator><creator>Wang, Junying</creator><creator>Kim, Michael</creator><creator>Kennedy, Catherine L.</creator><creator>Macpherson, Peter C. D.</creator><creator>Ji, Xuhuai</creator><creator>Van Roekel, Sabrina</creator><creator>Fraga, Danielle A.</creator><creator>Wang, Kun</creator><creator>Zhu, Jinguo</creator><creator>Wang, Yoyo</creator><creator>Sharp, Zelton D.</creator><creator>Miller, Richard A.</creator><creator>Rando, Thomas A.</creator><creator>Goldman, Daniel</creator><creator>Guan, Kun‐Liang</creator><creator>Shrager, Joseph B.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201906</creationdate><title>mTORC1 underlies age‐related muscle fiber damage and loss by inducing oxidative stress and catabolism</title><author>Tang, Huibin ; Inoki, Ken ; Brooks, Susan V. ; Okazawa, Hideki ; Lee, Myung ; Wang, Junying ; Kim, Michael ; Kennedy, Catherine L. ; Macpherson, Peter C. D. ; Ji, Xuhuai ; Van Roekel, Sabrina ; Fraga, Danielle A. ; Wang, Kun ; Zhu, Jinguo ; Wang, Yoyo ; Sharp, Zelton D. ; Miller, Richard A. ; Rando, Thomas A. ; Goldman, Daniel ; Guan, Kun‐Liang ; Shrager, Joseph B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5813-e2168101a6212d6ad1d3b7e1b7fb295c1a43d329e7286912468e79d72f948c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Cells, Cultured</topic><topic>Humans</topic><topic>Life span</topic><topic>Mechanistic Target of Rapamycin Complex 1 - antagonists &amp; inhibitors</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Mitochondria</topic><topic>mTORC1</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle Fibers, Skeletal - pathology</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Original Paper</topic><topic>Original Papers</topic><topic>Oxidative Stress</topic><topic>Phosphorylation</topic><topic>Sarcopenia</topic><topic>signal transduction</topic><topic>Skeletal muscle</topic><topic>Stat3 protein</topic><topic>Tuberous Sclerosis Complex 1</topic><topic>Tuberous Sclerosis Complex 1 Protein - deficiency</topic><topic>Tuberous Sclerosis Complex 1 Protein - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Huibin</creatorcontrib><creatorcontrib>Inoki, Ken</creatorcontrib><creatorcontrib>Brooks, Susan V.</creatorcontrib><creatorcontrib>Okazawa, Hideki</creatorcontrib><creatorcontrib>Lee, Myung</creatorcontrib><creatorcontrib>Wang, Junying</creatorcontrib><creatorcontrib>Kim, Michael</creatorcontrib><creatorcontrib>Kennedy, Catherine L.</creatorcontrib><creatorcontrib>Macpherson, Peter C. D.</creatorcontrib><creatorcontrib>Ji, Xuhuai</creatorcontrib><creatorcontrib>Van Roekel, Sabrina</creatorcontrib><creatorcontrib>Fraga, Danielle A.</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Zhu, Jinguo</creatorcontrib><creatorcontrib>Wang, Yoyo</creatorcontrib><creatorcontrib>Sharp, Zelton D.</creatorcontrib><creatorcontrib>Miller, Richard A.</creatorcontrib><creatorcontrib>Rando, Thomas A.</creatorcontrib><creatorcontrib>Goldman, Daniel</creatorcontrib><creatorcontrib>Guan, Kun‐Liang</creatorcontrib><creatorcontrib>Shrager, Joseph B.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Huibin</au><au>Inoki, Ken</au><au>Brooks, Susan V.</au><au>Okazawa, Hideki</au><au>Lee, Myung</au><au>Wang, Junying</au><au>Kim, Michael</au><au>Kennedy, Catherine L.</au><au>Macpherson, Peter C. D.</au><au>Ji, Xuhuai</au><au>Van Roekel, Sabrina</au><au>Fraga, Danielle A.</au><au>Wang, Kun</au><au>Zhu, Jinguo</au><au>Wang, Yoyo</au><au>Sharp, Zelton D.</au><au>Miller, Richard A.</au><au>Rando, Thomas A.</au><au>Goldman, Daniel</au><au>Guan, Kun‐Liang</au><au>Shrager, Joseph B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTORC1 underlies age‐related muscle fiber damage and loss by inducing oxidative stress and catabolism</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2019-06</date><risdate>2019</risdate><volume>18</volume><issue>3</issue><spage>e12943</spage><epage>n/a</epage><pages>e12943-n/a</pages><issn>1474-9718</issn><eissn>1474-9726</eissn><abstract>Aging leads to skeletal muscle atrophy (i.e., sarcopenia), and muscle fiber loss is a critical component of this process. The mechanisms underlying these age‐related changes, however, remain unclear. We show here that mTORC1 signaling is activated in a subset of skeletal muscle fibers in aging mouse and human, colocalized with fiber damage. Activation of mTORC1 in TSC1 knockout mouse muscle fibers increases the content of morphologically abnormal mitochondria and causes progressive oxidative stress, fiber damage, and fiber loss over the lifespan. Transcriptomic profiling reveals that mTORC1's activation increases the expression of growth differentiation factors (GDF3, 5, and 15), and of genes involved in mitochondrial oxidative stress and catabolism. We show that increased GDF15 is sufficient to induce oxidative stress and catabolic changes, and that mTORC1 increases the expression of GDF15 via phosphorylation of STAT3. Inhibition of mTORC1 in aging mouse decreases the expression of GDFs and STAT3's phosphorylation in skeletal muscle, reducing oxidative stress and muscle fiber damage and loss. Thus, chronically increased mTORC1 activity contributes to age‐related muscle atrophy, and GDF signaling is a proposed mechanism.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30924297</pmid><doi>10.1111/acel.12943</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-9718
ispartof Aging cell, 2019-06, Vol.18 (3), p.e12943-n/a
issn 1474-9718
1474-9726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6516169
source DOAJ, Directory of Open Access Journals; PubMed Central (Open Access); Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Open Access; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Aging
Aging - metabolism
Animals
Atrophy
Cells, Cultured
Humans
Life span
Mechanistic Target of Rapamycin Complex 1 - antagonists & inhibitors
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mice
Mice, Knockout
Mice, Transgenic
Mitochondria
mTORC1
Muscle Fibers, Skeletal - metabolism
Muscle Fibers, Skeletal - pathology
Muscles
Musculoskeletal system
Original Paper
Original Papers
Oxidative Stress
Phosphorylation
Sarcopenia
signal transduction
Skeletal muscle
Stat3 protein
Tuberous Sclerosis Complex 1
Tuberous Sclerosis Complex 1 Protein - deficiency
Tuberous Sclerosis Complex 1 Protein - metabolism
title mTORC1 underlies age‐related muscle fiber damage and loss by inducing oxidative stress and catabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTORC1%20underlies%20age%E2%80%90related%20muscle%20fiber%20damage%20and%20loss%20by%20inducing%20oxidative%20stress%20and%20catabolism&rft.jtitle=Aging%20cell&rft.au=Tang,%20Huibin&rft.date=2019-06&rft.volume=18&rft.issue=3&rft.spage=e12943&rft.epage=n/a&rft.pages=e12943-n/a&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.12943&rft_dat=%3Cgale_pubme%3EA707859794%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2224368788&rft_id=info:pmid/30924297&rft_galeid=A707859794&rfr_iscdi=true