Improvement of l-Leucine Production in Corynebacterium glutamicum by Altering the Redox Flux

The production of l-leucine was improved by the disruption of encoding transcriptional regulator and overexpression of the key genes ( ) of the l-leucine biosynthesis pathway in XQ-9. In order to improve l-leucine production, we rationally engineered to enhance l-leucine production, by improving the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2019-04, Vol.20 (8), p.2020
Hauptverfasser: Wang, Ying-Yu, Zhang, Feng, Xu, Jian-Zhong, Zhang, Wei-Guo, Chen, Xiu-Lai, Liu, Li-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 2020
container_title International journal of molecular sciences
container_volume 20
creator Wang, Ying-Yu
Zhang, Feng
Xu, Jian-Zhong
Zhang, Wei-Guo
Chen, Xiu-Lai
Liu, Li-Ming
description The production of l-leucine was improved by the disruption of encoding transcriptional regulator and overexpression of the key genes ( ) of the l-leucine biosynthesis pathway in XQ-9. In order to improve l-leucine production, we rationally engineered to enhance l-leucine production, by improving the redox flux. On the basis of this, we manipulated the redox state of the cells by mutating the coenzyme-binding domains of acetohydroxyacid isomeroreductase encoded by , inserting NAD-specific leucine dehydrogenase, encoded by from , and glutamate dehydrogenase encoded by from , instead of endogenous branched-chain amino acid transaminase and glutamate dehydrogenase, respectively. The yield of l-leucine reached 22.62 ± 0.17 g·L by strain ΔLtbR-acetohydroxyacid isomeroreductase (AHAIR) /ABNC E, and the concentrations of the by-products (l-valine and l-alanine) increased, compared to the strain ΔLtbR/ABNCE. Strain ΔLtbR-AHAIR LeuDH/ABNC LDH accumulated 22.87±0.31 g·L l-leucine, but showed a drastically low l-valine accumulation (from 8.06 ± 0.35 g·L to 2.72 ± 0.11 g·L ), in comparison to strain ΔLtbR-AHAIR /ABNC E, which indicated that LeuDH has much specificity for l-leucine synthesis but not for l-valine synthesis. Subsequently, the resultant strain ΔLtbR-AHAIR LeuDHRocG/ABNC LDH accumulated 23.31 ± 0.24 g·L l-leucine with a glucose conversion efficiency of 0.191 g·g .
doi_str_mv 10.3390/ijms20082020
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6515235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332333937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-7dd571da20b398393cab741783d7a038906f6dc09d91ee794c8457c3043bce83</originalsourceid><addsrcrecordid>eNpdkdFrFDEQxoMotlbffJaAL31wdZLsbjYvQjmsFg4U6aMQssncNcduciab0vvvTWktpxDIMPPjY775CHnL4KMQCj753Zw5wMCBwzNyylrOG4BePj-qT8irnHcAXPBOvSQnggHnqpWn5NfVvE_xFmcMC40bOjVrLNYHpD9SdMUuPgbqA13FdAg4Grtg8mWm26ksZva2luOBXkz37bClyw3Sn-jiHb2cyt1r8mJjpoxvHv8zcn355Xr1rVl__3q1ulg3tpXD0kjnOsmc4TAKNQglrBlly-QgnDQgBgX9pncWlFMMUarWDm0nrYBWjBYHcUY-P8juyzijs9VKMpPeJz-bdNDReP3vJPgbvY23uu9Yx0VXBc4fBVL8XTAvevbZ4jSZgLFkzTnruerrJSv6_j90F0sK1Z3mQtRX15eV-vBA2RRzTrh5WoaBvk9NH6dW8XfHBp7gvzGJP2w3k68</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332333937</pqid></control><display><type>article</type><title>Improvement of l-Leucine Production in Corynebacterium glutamicum by Altering the Redox Flux</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wang, Ying-Yu ; Zhang, Feng ; Xu, Jian-Zhong ; Zhang, Wei-Guo ; Chen, Xiu-Lai ; Liu, Li-Ming</creator><creatorcontrib>Wang, Ying-Yu ; Zhang, Feng ; Xu, Jian-Zhong ; Zhang, Wei-Guo ; Chen, Xiu-Lai ; Liu, Li-Ming</creatorcontrib><description>The production of l-leucine was improved by the disruption of encoding transcriptional regulator and overexpression of the key genes ( ) of the l-leucine biosynthesis pathway in XQ-9. In order to improve l-leucine production, we rationally engineered to enhance l-leucine production, by improving the redox flux. On the basis of this, we manipulated the redox state of the cells by mutating the coenzyme-binding domains of acetohydroxyacid isomeroreductase encoded by , inserting NAD-specific leucine dehydrogenase, encoded by from , and glutamate dehydrogenase encoded by from , instead of endogenous branched-chain amino acid transaminase and glutamate dehydrogenase, respectively. The yield of l-leucine reached 22.62 ± 0.17 g·L by strain ΔLtbR-acetohydroxyacid isomeroreductase (AHAIR) /ABNC E, and the concentrations of the by-products (l-valine and l-alanine) increased, compared to the strain ΔLtbR/ABNCE. Strain ΔLtbR-AHAIR LeuDH/ABNC LDH accumulated 22.87±0.31 g·L l-leucine, but showed a drastically low l-valine accumulation (from 8.06 ± 0.35 g·L to 2.72 ± 0.11 g·L ), in comparison to strain ΔLtbR-AHAIR /ABNC E, which indicated that LeuDH has much specificity for l-leucine synthesis but not for l-valine synthesis. Subsequently, the resultant strain ΔLtbR-AHAIR LeuDHRocG/ABNC LDH accumulated 23.31 ± 0.24 g·L l-leucine with a glucose conversion efficiency of 0.191 g·g .</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20082020</identifier><identifier>PMID: 31022947</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amino acid substitution ; Amino acids ; Animal feed ; Attenuation ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biosynthesis ; Biosynthetic Pathways ; Chain branching ; Corynebacterium glutamicum ; Corynebacterium glutamicum - genetics ; Corynebacterium glutamicum - metabolism ; Cosmetics ; Dehydrogenases ; Enzymes ; Fermentation ; Flavor ; Food additives ; Genes ; Glutamate Dehydrogenase (NADP+) - genetics ; Glutamate Dehydrogenase (NADP+) - metabolism ; Glutamic acid ; Homeostasis ; Ketol-Acid Reductoisomerase - genetics ; Ketol-Acid Reductoisomerase - metabolism ; Leucine ; Leucine - genetics ; Leucine - metabolism ; Leucine Dehydrogenase - genetics ; Leucine Dehydrogenase - metabolism ; Liver diseases ; Lysine ; Metabolic Engineering - methods ; Metabolism ; Mutagenesis ; Mutants ; NADH ; Nutritional status ; Oxidation-Reduction ; Production capacity ; Protein biosynthesis ; Protein synthesis ; Site-directed mutagenesis ; Transcription</subject><ispartof>International journal of molecular sciences, 2019-04, Vol.20 (8), p.2020</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-7dd571da20b398393cab741783d7a038906f6dc09d91ee794c8457c3043bce83</citedby><cites>FETCH-LOGICAL-c478t-7dd571da20b398393cab741783d7a038906f6dc09d91ee794c8457c3043bce83</cites><orcidid>0000-0003-0750-6875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515235/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515235/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31022947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ying-Yu</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Xu, Jian-Zhong</creatorcontrib><creatorcontrib>Zhang, Wei-Guo</creatorcontrib><creatorcontrib>Chen, Xiu-Lai</creatorcontrib><creatorcontrib>Liu, Li-Ming</creatorcontrib><title>Improvement of l-Leucine Production in Corynebacterium glutamicum by Altering the Redox Flux</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The production of l-leucine was improved by the disruption of encoding transcriptional regulator and overexpression of the key genes ( ) of the l-leucine biosynthesis pathway in XQ-9. In order to improve l-leucine production, we rationally engineered to enhance l-leucine production, by improving the redox flux. On the basis of this, we manipulated the redox state of the cells by mutating the coenzyme-binding domains of acetohydroxyacid isomeroreductase encoded by , inserting NAD-specific leucine dehydrogenase, encoded by from , and glutamate dehydrogenase encoded by from , instead of endogenous branched-chain amino acid transaminase and glutamate dehydrogenase, respectively. The yield of l-leucine reached 22.62 ± 0.17 g·L by strain ΔLtbR-acetohydroxyacid isomeroreductase (AHAIR) /ABNC E, and the concentrations of the by-products (l-valine and l-alanine) increased, compared to the strain ΔLtbR/ABNCE. Strain ΔLtbR-AHAIR LeuDH/ABNC LDH accumulated 22.87±0.31 g·L l-leucine, but showed a drastically low l-valine accumulation (from 8.06 ± 0.35 g·L to 2.72 ± 0.11 g·L ), in comparison to strain ΔLtbR-AHAIR /ABNC E, which indicated that LeuDH has much specificity for l-leucine synthesis but not for l-valine synthesis. Subsequently, the resultant strain ΔLtbR-AHAIR LeuDHRocG/ABNC LDH accumulated 23.31 ± 0.24 g·L l-leucine with a glucose conversion efficiency of 0.191 g·g .</description><subject>Amino acid substitution</subject><subject>Amino acids</subject><subject>Animal feed</subject><subject>Attenuation</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>Chain branching</subject><subject>Corynebacterium glutamicum</subject><subject>Corynebacterium glutamicum - genetics</subject><subject>Corynebacterium glutamicum - metabolism</subject><subject>Cosmetics</subject><subject>Dehydrogenases</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Flavor</subject><subject>Food additives</subject><subject>Genes</subject><subject>Glutamate Dehydrogenase (NADP+) - genetics</subject><subject>Glutamate Dehydrogenase (NADP+) - metabolism</subject><subject>Glutamic acid</subject><subject>Homeostasis</subject><subject>Ketol-Acid Reductoisomerase - genetics</subject><subject>Ketol-Acid Reductoisomerase - metabolism</subject><subject>Leucine</subject><subject>Leucine - genetics</subject><subject>Leucine - metabolism</subject><subject>Leucine Dehydrogenase - genetics</subject><subject>Leucine Dehydrogenase - metabolism</subject><subject>Liver diseases</subject><subject>Lysine</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolism</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>NADH</subject><subject>Nutritional status</subject><subject>Oxidation-Reduction</subject><subject>Production capacity</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Site-directed mutagenesis</subject><subject>Transcription</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkdFrFDEQxoMotlbffJaAL31wdZLsbjYvQjmsFg4U6aMQssncNcduciab0vvvTWktpxDIMPPjY775CHnL4KMQCj753Zw5wMCBwzNyylrOG4BePj-qT8irnHcAXPBOvSQnggHnqpWn5NfVvE_xFmcMC40bOjVrLNYHpD9SdMUuPgbqA13FdAg4Grtg8mWm26ksZva2luOBXkz37bClyw3Sn-jiHb2cyt1r8mJjpoxvHv8zcn355Xr1rVl__3q1ulg3tpXD0kjnOsmc4TAKNQglrBlly-QgnDQgBgX9pncWlFMMUarWDm0nrYBWjBYHcUY-P8juyzijs9VKMpPeJz-bdNDReP3vJPgbvY23uu9Yx0VXBc4fBVL8XTAvevbZ4jSZgLFkzTnruerrJSv6_j90F0sK1Z3mQtRX15eV-vBA2RRzTrh5WoaBvk9NH6dW8XfHBp7gvzGJP2w3k68</recordid><startdate>20190424</startdate><enddate>20190424</enddate><creator>Wang, Ying-Yu</creator><creator>Zhang, Feng</creator><creator>Xu, Jian-Zhong</creator><creator>Zhang, Wei-Guo</creator><creator>Chen, Xiu-Lai</creator><creator>Liu, Li-Ming</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0750-6875</orcidid></search><sort><creationdate>20190424</creationdate><title>Improvement of l-Leucine Production in Corynebacterium glutamicum by Altering the Redox Flux</title><author>Wang, Ying-Yu ; Zhang, Feng ; Xu, Jian-Zhong ; Zhang, Wei-Guo ; Chen, Xiu-Lai ; Liu, Li-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-7dd571da20b398393cab741783d7a038906f6dc09d91ee794c8457c3043bce83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acid substitution</topic><topic>Amino acids</topic><topic>Animal feed</topic><topic>Attenuation</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>Chain branching</topic><topic>Corynebacterium glutamicum</topic><topic>Corynebacterium glutamicum - genetics</topic><topic>Corynebacterium glutamicum - metabolism</topic><topic>Cosmetics</topic><topic>Dehydrogenases</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Flavor</topic><topic>Food additives</topic><topic>Genes</topic><topic>Glutamate Dehydrogenase (NADP+) - genetics</topic><topic>Glutamate Dehydrogenase (NADP+) - metabolism</topic><topic>Glutamic acid</topic><topic>Homeostasis</topic><topic>Ketol-Acid Reductoisomerase - genetics</topic><topic>Ketol-Acid Reductoisomerase - metabolism</topic><topic>Leucine</topic><topic>Leucine - genetics</topic><topic>Leucine - metabolism</topic><topic>Leucine Dehydrogenase - genetics</topic><topic>Leucine Dehydrogenase - metabolism</topic><topic>Liver diseases</topic><topic>Lysine</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolism</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>NADH</topic><topic>Nutritional status</topic><topic>Oxidation-Reduction</topic><topic>Production capacity</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Site-directed mutagenesis</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ying-Yu</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Xu, Jian-Zhong</creatorcontrib><creatorcontrib>Zhang, Wei-Guo</creatorcontrib><creatorcontrib>Chen, Xiu-Lai</creatorcontrib><creatorcontrib>Liu, Li-Ming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ying-Yu</au><au>Zhang, Feng</au><au>Xu, Jian-Zhong</au><au>Zhang, Wei-Guo</au><au>Chen, Xiu-Lai</au><au>Liu, Li-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of l-Leucine Production in Corynebacterium glutamicum by Altering the Redox Flux</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-04-24</date><risdate>2019</risdate><volume>20</volume><issue>8</issue><spage>2020</spage><pages>2020-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The production of l-leucine was improved by the disruption of encoding transcriptional regulator and overexpression of the key genes ( ) of the l-leucine biosynthesis pathway in XQ-9. In order to improve l-leucine production, we rationally engineered to enhance l-leucine production, by improving the redox flux. On the basis of this, we manipulated the redox state of the cells by mutating the coenzyme-binding domains of acetohydroxyacid isomeroreductase encoded by , inserting NAD-specific leucine dehydrogenase, encoded by from , and glutamate dehydrogenase encoded by from , instead of endogenous branched-chain amino acid transaminase and glutamate dehydrogenase, respectively. The yield of l-leucine reached 22.62 ± 0.17 g·L by strain ΔLtbR-acetohydroxyacid isomeroreductase (AHAIR) /ABNC E, and the concentrations of the by-products (l-valine and l-alanine) increased, compared to the strain ΔLtbR/ABNCE. Strain ΔLtbR-AHAIR LeuDH/ABNC LDH accumulated 22.87±0.31 g·L l-leucine, but showed a drastically low l-valine accumulation (from 8.06 ± 0.35 g·L to 2.72 ± 0.11 g·L ), in comparison to strain ΔLtbR-AHAIR /ABNC E, which indicated that LeuDH has much specificity for l-leucine synthesis but not for l-valine synthesis. Subsequently, the resultant strain ΔLtbR-AHAIR LeuDHRocG/ABNC LDH accumulated 23.31 ± 0.24 g·L l-leucine with a glucose conversion efficiency of 0.191 g·g .</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31022947</pmid><doi>10.3390/ijms20082020</doi><orcidid>https://orcid.org/0000-0003-0750-6875</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2019-04, Vol.20 (8), p.2020
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6515235
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Amino acid substitution
Amino acids
Animal feed
Attenuation
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biosynthesis
Biosynthetic Pathways
Chain branching
Corynebacterium glutamicum
Corynebacterium glutamicum - genetics
Corynebacterium glutamicum - metabolism
Cosmetics
Dehydrogenases
Enzymes
Fermentation
Flavor
Food additives
Genes
Glutamate Dehydrogenase (NADP+) - genetics
Glutamate Dehydrogenase (NADP+) - metabolism
Glutamic acid
Homeostasis
Ketol-Acid Reductoisomerase - genetics
Ketol-Acid Reductoisomerase - metabolism
Leucine
Leucine - genetics
Leucine - metabolism
Leucine Dehydrogenase - genetics
Leucine Dehydrogenase - metabolism
Liver diseases
Lysine
Metabolic Engineering - methods
Metabolism
Mutagenesis
Mutants
NADH
Nutritional status
Oxidation-Reduction
Production capacity
Protein biosynthesis
Protein synthesis
Site-directed mutagenesis
Transcription
title Improvement of l-Leucine Production in Corynebacterium glutamicum by Altering the Redox Flux
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20l-Leucine%20Production%20in%20Corynebacterium%20glutamicum%20by%20Altering%20the%20Redox%20Flux&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Wang,%20Ying-Yu&rft.date=2019-04-24&rft.volume=20&rft.issue=8&rft.spage=2020&rft.pages=2020-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20082020&rft_dat=%3Cproquest_pubme%3E2332333937%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332333937&rft_id=info:pmid/31022947&rfr_iscdi=true