Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation

Abstract Next-generation sequencing technologies have made it possible to carry out transcriptome analysis at the single-cell level. Single-cell RNA-sequencing (scRNA-seq) data provide insights into cellular dynamics, including intercellular heterogeneity as well as inter- and intra-cellular fluctua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2019-05, Vol.47 (9), p.4539-4553
Hauptverfasser: Kubo, Minoru, Nishiyama, Tomoaki, Tamada, Yosuke, Sano, Ryosuke, Ishikawa, Masaki, Murata, Takashi, Imai, Akihiro, Lang, Daniel, Demura, Taku, Reski, Ralf, Hasebe, Mitsuyasu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4553
container_issue 9
container_start_page 4539
container_title Nucleic acids research
container_volume 47
creator Kubo, Minoru
Nishiyama, Tomoaki
Tamada, Yosuke
Sano, Ryosuke
Ishikawa, Masaki
Murata, Takashi
Imai, Akihiro
Lang, Daniel
Demura, Taku
Reski, Ralf
Hasebe, Mitsuyasu
description Abstract Next-generation sequencing technologies have made it possible to carry out transcriptome analysis at the single-cell level. Single-cell RNA-sequencing (scRNA-seq) data provide insights into cellular dynamics, including intercellular heterogeneity as well as inter- and intra-cellular fluctuations in gene expression that cannot be studied using populations of cells. The utilization of scRNA-seq is, however, restricted to cell types that can be isolated from their original tissues, and it can be difficult to obtain precise positional information for these cells in situ. Here, we established single cell-digital gene expression (1cell-DGE), a method of scRNA-seq that uses micromanipulation to extract the contents of individual living cells in intact tissue while recording their positional information. With 1cell-DGE, we could detect differentially expressed genes (DEGs) during the reprogramming of leaf cells of the moss Physcomitrella patens, identifying 6382 DEGs between cells at 0 and 24 h after excision. Furthermore, we identified a subpopulation of reprogramming cells based on their pseudotimes, which were calculated using transcriptome profiles at 24 h. 1cell-DGE with microcapillary manipulation can be used to analyze the gene expression of individual cells without detaching them from their tightly associated tissues, enabling us to retain positional information and investigate cell-cell interactions.
doi_str_mv 10.1093/nar/gkz181
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6511839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkz181</oup_id><sourcerecordid>2193172087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9df715cce205ffbdba77f7e0dd61986c3b560c56ce6b26ee3fb911684b37dd6b3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVoaDbbXvIDii6FEnCisWzZvhTK0iaBhQTanoUsSxs1luRK9sLm10dmkyW55KJB6JunefMQOgNyAaShl06Ey83DI9RwhBZAWZ4VDcs_oAWhpMyAFPUJOo3xHyFQQFl8RCeU1BUtC7JA29_GbXqVSdX3eAzCRRnMMHqrsHCi30UTsdf47n4XpbdmDIkTuFdC47kl4m4KSQEHNQS_CcLa-TbF-bRGBi_FYFJL2GErnBmmXozGu0_oWIs-qs_PdYn-_vr5Z3WdrW-vblY_1pksqmLMmk5XUEqpclJq3XatqCpdKdJ1DJqaSdqWjMiSScXanClFddsAsLpoaZWYli7R973uMLVWdVK55LHnQzA2jcS9MPztizP3fOO3nJUANW2SwLdngeD_TyqO3Jo4OxdO-SnyHBoKVT7vc4nO92hyHWNQ-vANED4HxVNQfB9Ugr-8HuyAviSTgK97wE_De0JPP6GiFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193172087</pqid></control><display><type>article</type><title>Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kubo, Minoru ; Nishiyama, Tomoaki ; Tamada, Yosuke ; Sano, Ryosuke ; Ishikawa, Masaki ; Murata, Takashi ; Imai, Akihiro ; Lang, Daniel ; Demura, Taku ; Reski, Ralf ; Hasebe, Mitsuyasu</creator><creatorcontrib>Kubo, Minoru ; Nishiyama, Tomoaki ; Tamada, Yosuke ; Sano, Ryosuke ; Ishikawa, Masaki ; Murata, Takashi ; Imai, Akihiro ; Lang, Daniel ; Demura, Taku ; Reski, Ralf ; Hasebe, Mitsuyasu</creatorcontrib><description>Abstract Next-generation sequencing technologies have made it possible to carry out transcriptome analysis at the single-cell level. Single-cell RNA-sequencing (scRNA-seq) data provide insights into cellular dynamics, including intercellular heterogeneity as well as inter- and intra-cellular fluctuations in gene expression that cannot be studied using populations of cells. The utilization of scRNA-seq is, however, restricted to cell types that can be isolated from their original tissues, and it can be difficult to obtain precise positional information for these cells in situ. Here, we established single cell-digital gene expression (1cell-DGE), a method of scRNA-seq that uses micromanipulation to extract the contents of individual living cells in intact tissue while recording their positional information. With 1cell-DGE, we could detect differentially expressed genes (DEGs) during the reprogramming of leaf cells of the moss Physcomitrella patens, identifying 6382 DEGs between cells at 0 and 24 h after excision. Furthermore, we identified a subpopulation of reprogramming cells based on their pseudotimes, which were calculated using transcriptome profiles at 24 h. 1cell-DGE with microcapillary manipulation can be used to analyze the gene expression of individual cells without detaching them from their tightly associated tissues, enabling us to retain positional information and investigate cell-cell interactions.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkz181</identifier><identifier>PMID: 30873540</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bryopsida - genetics ; Cellular Reprogramming - genetics ; Gene Expression Profiling - methods ; Gene regulation, Chromatin and Epigenetics ; Plant Leaves - genetics ; Sequence Analysis, RNA - methods ; Single-Cell Analysis - methods ; Software ; Transcriptome - genetics</subject><ispartof>Nucleic acids research, 2019-05, Vol.47 (9), p.4539-4553</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9df715cce205ffbdba77f7e0dd61986c3b560c56ce6b26ee3fb911684b37dd6b3</citedby><cites>FETCH-LOGICAL-c474t-9df715cce205ffbdba77f7e0dd61986c3b560c56ce6b26ee3fb911684b37dd6b3</cites><orcidid>0000-0001-8691-6252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511839/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511839/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1605,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30873540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kubo, Minoru</creatorcontrib><creatorcontrib>Nishiyama, Tomoaki</creatorcontrib><creatorcontrib>Tamada, Yosuke</creatorcontrib><creatorcontrib>Sano, Ryosuke</creatorcontrib><creatorcontrib>Ishikawa, Masaki</creatorcontrib><creatorcontrib>Murata, Takashi</creatorcontrib><creatorcontrib>Imai, Akihiro</creatorcontrib><creatorcontrib>Lang, Daniel</creatorcontrib><creatorcontrib>Demura, Taku</creatorcontrib><creatorcontrib>Reski, Ralf</creatorcontrib><creatorcontrib>Hasebe, Mitsuyasu</creatorcontrib><title>Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract Next-generation sequencing technologies have made it possible to carry out transcriptome analysis at the single-cell level. Single-cell RNA-sequencing (scRNA-seq) data provide insights into cellular dynamics, including intercellular heterogeneity as well as inter- and intra-cellular fluctuations in gene expression that cannot be studied using populations of cells. The utilization of scRNA-seq is, however, restricted to cell types that can be isolated from their original tissues, and it can be difficult to obtain precise positional information for these cells in situ. Here, we established single cell-digital gene expression (1cell-DGE), a method of scRNA-seq that uses micromanipulation to extract the contents of individual living cells in intact tissue while recording their positional information. With 1cell-DGE, we could detect differentially expressed genes (DEGs) during the reprogramming of leaf cells of the moss Physcomitrella patens, identifying 6382 DEGs between cells at 0 and 24 h after excision. Furthermore, we identified a subpopulation of reprogramming cells based on their pseudotimes, which were calculated using transcriptome profiles at 24 h. 1cell-DGE with microcapillary manipulation can be used to analyze the gene expression of individual cells without detaching them from their tightly associated tissues, enabling us to retain positional information and investigate cell-cell interactions.</description><subject>Bryopsida - genetics</subject><subject>Cellular Reprogramming - genetics</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene regulation, Chromatin and Epigenetics</subject><subject>Plant Leaves - genetics</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Single-Cell Analysis - methods</subject><subject>Software</subject><subject>Transcriptome - genetics</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUFr3DAQhUVoaDbbXvIDii6FEnCisWzZvhTK0iaBhQTanoUsSxs1luRK9sLm10dmkyW55KJB6JunefMQOgNyAaShl06Ey83DI9RwhBZAWZ4VDcs_oAWhpMyAFPUJOo3xHyFQQFl8RCeU1BUtC7JA29_GbXqVSdX3eAzCRRnMMHqrsHCi30UTsdf47n4XpbdmDIkTuFdC47kl4m4KSQEHNQS_CcLa-TbF-bRGBi_FYFJL2GErnBmmXozGu0_oWIs-qs_PdYn-_vr5Z3WdrW-vblY_1pksqmLMmk5XUEqpclJq3XatqCpdKdJ1DJqaSdqWjMiSScXanClFddsAsLpoaZWYli7R973uMLVWdVK55LHnQzA2jcS9MPztizP3fOO3nJUANW2SwLdngeD_TyqO3Jo4OxdO-SnyHBoKVT7vc4nO92hyHWNQ-vANED4HxVNQfB9Ugr-8HuyAviSTgK97wE_De0JPP6GiFg</recordid><startdate>20190521</startdate><enddate>20190521</enddate><creator>Kubo, Minoru</creator><creator>Nishiyama, Tomoaki</creator><creator>Tamada, Yosuke</creator><creator>Sano, Ryosuke</creator><creator>Ishikawa, Masaki</creator><creator>Murata, Takashi</creator><creator>Imai, Akihiro</creator><creator>Lang, Daniel</creator><creator>Demura, Taku</creator><creator>Reski, Ralf</creator><creator>Hasebe, Mitsuyasu</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8691-6252</orcidid></search><sort><creationdate>20190521</creationdate><title>Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation</title><author>Kubo, Minoru ; Nishiyama, Tomoaki ; Tamada, Yosuke ; Sano, Ryosuke ; Ishikawa, Masaki ; Murata, Takashi ; Imai, Akihiro ; Lang, Daniel ; Demura, Taku ; Reski, Ralf ; Hasebe, Mitsuyasu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9df715cce205ffbdba77f7e0dd61986c3b560c56ce6b26ee3fb911684b37dd6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bryopsida - genetics</topic><topic>Cellular Reprogramming - genetics</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene regulation, Chromatin and Epigenetics</topic><topic>Plant Leaves - genetics</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Single-Cell Analysis - methods</topic><topic>Software</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubo, Minoru</creatorcontrib><creatorcontrib>Nishiyama, Tomoaki</creatorcontrib><creatorcontrib>Tamada, Yosuke</creatorcontrib><creatorcontrib>Sano, Ryosuke</creatorcontrib><creatorcontrib>Ishikawa, Masaki</creatorcontrib><creatorcontrib>Murata, Takashi</creatorcontrib><creatorcontrib>Imai, Akihiro</creatorcontrib><creatorcontrib>Lang, Daniel</creatorcontrib><creatorcontrib>Demura, Taku</creatorcontrib><creatorcontrib>Reski, Ralf</creatorcontrib><creatorcontrib>Hasebe, Mitsuyasu</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubo, Minoru</au><au>Nishiyama, Tomoaki</au><au>Tamada, Yosuke</au><au>Sano, Ryosuke</au><au>Ishikawa, Masaki</au><au>Murata, Takashi</au><au>Imai, Akihiro</au><au>Lang, Daniel</au><au>Demura, Taku</au><au>Reski, Ralf</au><au>Hasebe, Mitsuyasu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-05-21</date><risdate>2019</risdate><volume>47</volume><issue>9</issue><spage>4539</spage><epage>4553</epage><pages>4539-4553</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Next-generation sequencing technologies have made it possible to carry out transcriptome analysis at the single-cell level. Single-cell RNA-sequencing (scRNA-seq) data provide insights into cellular dynamics, including intercellular heterogeneity as well as inter- and intra-cellular fluctuations in gene expression that cannot be studied using populations of cells. The utilization of scRNA-seq is, however, restricted to cell types that can be isolated from their original tissues, and it can be difficult to obtain precise positional information for these cells in situ. Here, we established single cell-digital gene expression (1cell-DGE), a method of scRNA-seq that uses micromanipulation to extract the contents of individual living cells in intact tissue while recording their positional information. With 1cell-DGE, we could detect differentially expressed genes (DEGs) during the reprogramming of leaf cells of the moss Physcomitrella patens, identifying 6382 DEGs between cells at 0 and 24 h after excision. Furthermore, we identified a subpopulation of reprogramming cells based on their pseudotimes, which were calculated using transcriptome profiles at 24 h. 1cell-DGE with microcapillary manipulation can be used to analyze the gene expression of individual cells without detaching them from their tightly associated tissues, enabling us to retain positional information and investigate cell-cell interactions.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30873540</pmid><doi>10.1093/nar/gkz181</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8691-6252</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2019-05, Vol.47 (9), p.4539-4553
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6511839
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry
subjects Bryopsida - genetics
Cellular Reprogramming - genetics
Gene Expression Profiling - methods
Gene regulation, Chromatin and Epigenetics
Plant Leaves - genetics
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
Software
Transcriptome - genetics
title Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20transcriptome%20analysis%20of%20Physcomitrella%20leaf%20cells%20during%20reprogramming%20using%20microcapillary%20manipulation&rft.jtitle=Nucleic%20acids%20research&rft.au=Kubo,%20Minoru&rft.date=2019-05-21&rft.volume=47&rft.issue=9&rft.spage=4539&rft.epage=4553&rft.pages=4539-4553&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkz181&rft_dat=%3Cproquest_pubme%3E2193172087%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193172087&rft_id=info:pmid/30873540&rft_oup_id=10.1093/nar/gkz181&rfr_iscdi=true