Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation
Abstract Next-generation sequencing technologies have made it possible to carry out transcriptome analysis at the single-cell level. Single-cell RNA-sequencing (scRNA-seq) data provide insights into cellular dynamics, including intercellular heterogeneity as well as inter- and intra-cellular fluctua...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2019-05, Vol.47 (9), p.4539-4553 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4553 |
---|---|
container_issue | 9 |
container_start_page | 4539 |
container_title | Nucleic acids research |
container_volume | 47 |
creator | Kubo, Minoru Nishiyama, Tomoaki Tamada, Yosuke Sano, Ryosuke Ishikawa, Masaki Murata, Takashi Imai, Akihiro Lang, Daniel Demura, Taku Reski, Ralf Hasebe, Mitsuyasu |
description | Abstract
Next-generation sequencing technologies have made it possible to carry out transcriptome analysis at the single-cell level. Single-cell RNA-sequencing (scRNA-seq) data provide insights into cellular dynamics, including intercellular heterogeneity as well as inter- and intra-cellular fluctuations in gene expression that cannot be studied using populations of cells. The utilization of scRNA-seq is, however, restricted to cell types that can be isolated from their original tissues, and it can be difficult to obtain precise positional information for these cells in situ. Here, we established single cell-digital gene expression (1cell-DGE), a method of scRNA-seq that uses micromanipulation to extract the contents of individual living cells in intact tissue while recording their positional information. With 1cell-DGE, we could detect differentially expressed genes (DEGs) during the reprogramming of leaf cells of the moss Physcomitrella patens, identifying 6382 DEGs between cells at 0 and 24 h after excision. Furthermore, we identified a subpopulation of reprogramming cells based on their pseudotimes, which were calculated using transcriptome profiles at 24 h. 1cell-DGE with microcapillary manipulation can be used to analyze the gene expression of individual cells without detaching them from their tightly associated tissues, enabling us to retain positional information and investigate cell-cell interactions. |
doi_str_mv | 10.1093/nar/gkz181 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6511839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkz181</oup_id><sourcerecordid>2193172087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9df715cce205ffbdba77f7e0dd61986c3b560c56ce6b26ee3fb911684b37dd6b3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVoaDbbXvIDii6FEnCisWzZvhTK0iaBhQTanoUsSxs1luRK9sLm10dmkyW55KJB6JunefMQOgNyAaShl06Ey83DI9RwhBZAWZ4VDcs_oAWhpMyAFPUJOo3xHyFQQFl8RCeU1BUtC7JA29_GbXqVSdX3eAzCRRnMMHqrsHCi30UTsdf47n4XpbdmDIkTuFdC47kl4m4KSQEHNQS_CcLa-TbF-bRGBi_FYFJL2GErnBmmXozGu0_oWIs-qs_PdYn-_vr5Z3WdrW-vblY_1pksqmLMmk5XUEqpclJq3XatqCpdKdJ1DJqaSdqWjMiSScXanClFddsAsLpoaZWYli7R973uMLVWdVK55LHnQzA2jcS9MPztizP3fOO3nJUANW2SwLdngeD_TyqO3Jo4OxdO-SnyHBoKVT7vc4nO92hyHWNQ-vANED4HxVNQfB9Ugr-8HuyAviSTgK97wE_De0JPP6GiFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193172087</pqid></control><display><type>article</type><title>Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kubo, Minoru ; Nishiyama, Tomoaki ; Tamada, Yosuke ; Sano, Ryosuke ; Ishikawa, Masaki ; Murata, Takashi ; Imai, Akihiro ; Lang, Daniel ; Demura, Taku ; Reski, Ralf ; Hasebe, Mitsuyasu</creator><creatorcontrib>Kubo, Minoru ; Nishiyama, Tomoaki ; Tamada, Yosuke ; Sano, Ryosuke ; Ishikawa, Masaki ; Murata, Takashi ; Imai, Akihiro ; Lang, Daniel ; Demura, Taku ; Reski, Ralf ; Hasebe, Mitsuyasu</creatorcontrib><description>Abstract
Next-generation sequencing technologies have made it possible to carry out transcriptome analysis at the single-cell level. Single-cell RNA-sequencing (scRNA-seq) data provide insights into cellular dynamics, including intercellular heterogeneity as well as inter- and intra-cellular fluctuations in gene expression that cannot be studied using populations of cells. The utilization of scRNA-seq is, however, restricted to cell types that can be isolated from their original tissues, and it can be difficult to obtain precise positional information for these cells in situ. Here, we established single cell-digital gene expression (1cell-DGE), a method of scRNA-seq that uses micromanipulation to extract the contents of individual living cells in intact tissue while recording their positional information. With 1cell-DGE, we could detect differentially expressed genes (DEGs) during the reprogramming of leaf cells of the moss Physcomitrella patens, identifying 6382 DEGs between cells at 0 and 24 h after excision. Furthermore, we identified a subpopulation of reprogramming cells based on their pseudotimes, which were calculated using transcriptome profiles at 24 h. 1cell-DGE with microcapillary manipulation can be used to analyze the gene expression of individual cells without detaching them from their tightly associated tissues, enabling us to retain positional information and investigate cell-cell interactions.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkz181</identifier><identifier>PMID: 30873540</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bryopsida - genetics ; Cellular Reprogramming - genetics ; Gene Expression Profiling - methods ; Gene regulation, Chromatin and Epigenetics ; Plant Leaves - genetics ; Sequence Analysis, RNA - methods ; Single-Cell Analysis - methods ; Software ; Transcriptome - genetics</subject><ispartof>Nucleic acids research, 2019-05, Vol.47 (9), p.4539-4553</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9df715cce205ffbdba77f7e0dd61986c3b560c56ce6b26ee3fb911684b37dd6b3</citedby><cites>FETCH-LOGICAL-c474t-9df715cce205ffbdba77f7e0dd61986c3b560c56ce6b26ee3fb911684b37dd6b3</cites><orcidid>0000-0001-8691-6252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511839/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511839/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1605,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30873540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kubo, Minoru</creatorcontrib><creatorcontrib>Nishiyama, Tomoaki</creatorcontrib><creatorcontrib>Tamada, Yosuke</creatorcontrib><creatorcontrib>Sano, Ryosuke</creatorcontrib><creatorcontrib>Ishikawa, Masaki</creatorcontrib><creatorcontrib>Murata, Takashi</creatorcontrib><creatorcontrib>Imai, Akihiro</creatorcontrib><creatorcontrib>Lang, Daniel</creatorcontrib><creatorcontrib>Demura, Taku</creatorcontrib><creatorcontrib>Reski, Ralf</creatorcontrib><creatorcontrib>Hasebe, Mitsuyasu</creatorcontrib><title>Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
Next-generation sequencing technologies have made it possible to carry out transcriptome analysis at the single-cell level. Single-cell RNA-sequencing (scRNA-seq) data provide insights into cellular dynamics, including intercellular heterogeneity as well as inter- and intra-cellular fluctuations in gene expression that cannot be studied using populations of cells. The utilization of scRNA-seq is, however, restricted to cell types that can be isolated from their original tissues, and it can be difficult to obtain precise positional information for these cells in situ. Here, we established single cell-digital gene expression (1cell-DGE), a method of scRNA-seq that uses micromanipulation to extract the contents of individual living cells in intact tissue while recording their positional information. With 1cell-DGE, we could detect differentially expressed genes (DEGs) during the reprogramming of leaf cells of the moss Physcomitrella patens, identifying 6382 DEGs between cells at 0 and 24 h after excision. Furthermore, we identified a subpopulation of reprogramming cells based on their pseudotimes, which were calculated using transcriptome profiles at 24 h. 1cell-DGE with microcapillary manipulation can be used to analyze the gene expression of individual cells without detaching them from their tightly associated tissues, enabling us to retain positional information and investigate cell-cell interactions.</description><subject>Bryopsida - genetics</subject><subject>Cellular Reprogramming - genetics</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene regulation, Chromatin and Epigenetics</subject><subject>Plant Leaves - genetics</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Single-Cell Analysis - methods</subject><subject>Software</subject><subject>Transcriptome - genetics</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUFr3DAQhUVoaDbbXvIDii6FEnCisWzZvhTK0iaBhQTanoUsSxs1luRK9sLm10dmkyW55KJB6JunefMQOgNyAaShl06Ey83DI9RwhBZAWZ4VDcs_oAWhpMyAFPUJOo3xHyFQQFl8RCeU1BUtC7JA29_GbXqVSdX3eAzCRRnMMHqrsHCi30UTsdf47n4XpbdmDIkTuFdC47kl4m4KSQEHNQS_CcLa-TbF-bRGBi_FYFJL2GErnBmmXozGu0_oWIs-qs_PdYn-_vr5Z3WdrW-vblY_1pksqmLMmk5XUEqpclJq3XatqCpdKdJ1DJqaSdqWjMiSScXanClFddsAsLpoaZWYli7R973uMLVWdVK55LHnQzA2jcS9MPztizP3fOO3nJUANW2SwLdngeD_TyqO3Jo4OxdO-SnyHBoKVT7vc4nO92hyHWNQ-vANED4HxVNQfB9Ugr-8HuyAviSTgK97wE_De0JPP6GiFg</recordid><startdate>20190521</startdate><enddate>20190521</enddate><creator>Kubo, Minoru</creator><creator>Nishiyama, Tomoaki</creator><creator>Tamada, Yosuke</creator><creator>Sano, Ryosuke</creator><creator>Ishikawa, Masaki</creator><creator>Murata, Takashi</creator><creator>Imai, Akihiro</creator><creator>Lang, Daniel</creator><creator>Demura, Taku</creator><creator>Reski, Ralf</creator><creator>Hasebe, Mitsuyasu</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8691-6252</orcidid></search><sort><creationdate>20190521</creationdate><title>Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation</title><author>Kubo, Minoru ; Nishiyama, Tomoaki ; Tamada, Yosuke ; Sano, Ryosuke ; Ishikawa, Masaki ; Murata, Takashi ; Imai, Akihiro ; Lang, Daniel ; Demura, Taku ; Reski, Ralf ; Hasebe, Mitsuyasu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9df715cce205ffbdba77f7e0dd61986c3b560c56ce6b26ee3fb911684b37dd6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bryopsida - genetics</topic><topic>Cellular Reprogramming - genetics</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene regulation, Chromatin and Epigenetics</topic><topic>Plant Leaves - genetics</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Single-Cell Analysis - methods</topic><topic>Software</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubo, Minoru</creatorcontrib><creatorcontrib>Nishiyama, Tomoaki</creatorcontrib><creatorcontrib>Tamada, Yosuke</creatorcontrib><creatorcontrib>Sano, Ryosuke</creatorcontrib><creatorcontrib>Ishikawa, Masaki</creatorcontrib><creatorcontrib>Murata, Takashi</creatorcontrib><creatorcontrib>Imai, Akihiro</creatorcontrib><creatorcontrib>Lang, Daniel</creatorcontrib><creatorcontrib>Demura, Taku</creatorcontrib><creatorcontrib>Reski, Ralf</creatorcontrib><creatorcontrib>Hasebe, Mitsuyasu</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubo, Minoru</au><au>Nishiyama, Tomoaki</au><au>Tamada, Yosuke</au><au>Sano, Ryosuke</au><au>Ishikawa, Masaki</au><au>Murata, Takashi</au><au>Imai, Akihiro</au><au>Lang, Daniel</au><au>Demura, Taku</au><au>Reski, Ralf</au><au>Hasebe, Mitsuyasu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-05-21</date><risdate>2019</risdate><volume>47</volume><issue>9</issue><spage>4539</spage><epage>4553</epage><pages>4539-4553</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract
Next-generation sequencing technologies have made it possible to carry out transcriptome analysis at the single-cell level. Single-cell RNA-sequencing (scRNA-seq) data provide insights into cellular dynamics, including intercellular heterogeneity as well as inter- and intra-cellular fluctuations in gene expression that cannot be studied using populations of cells. The utilization of scRNA-seq is, however, restricted to cell types that can be isolated from their original tissues, and it can be difficult to obtain precise positional information for these cells in situ. Here, we established single cell-digital gene expression (1cell-DGE), a method of scRNA-seq that uses micromanipulation to extract the contents of individual living cells in intact tissue while recording their positional information. With 1cell-DGE, we could detect differentially expressed genes (DEGs) during the reprogramming of leaf cells of the moss Physcomitrella patens, identifying 6382 DEGs between cells at 0 and 24 h after excision. Furthermore, we identified a subpopulation of reprogramming cells based on their pseudotimes, which were calculated using transcriptome profiles at 24 h. 1cell-DGE with microcapillary manipulation can be used to analyze the gene expression of individual cells without detaching them from their tightly associated tissues, enabling us to retain positional information and investigate cell-cell interactions.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30873540</pmid><doi>10.1093/nar/gkz181</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8691-6252</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2019-05, Vol.47 (9), p.4539-4553 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6511839 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bryopsida - genetics Cellular Reprogramming - genetics Gene Expression Profiling - methods Gene regulation, Chromatin and Epigenetics Plant Leaves - genetics Sequence Analysis, RNA - methods Single-Cell Analysis - methods Software Transcriptome - genetics |
title | Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20transcriptome%20analysis%20of%20Physcomitrella%20leaf%20cells%20during%20reprogramming%20using%20microcapillary%20manipulation&rft.jtitle=Nucleic%20acids%20research&rft.au=Kubo,%20Minoru&rft.date=2019-05-21&rft.volume=47&rft.issue=9&rft.spage=4539&rft.epage=4553&rft.pages=4539-4553&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkz181&rft_dat=%3Cproquest_pubme%3E2193172087%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193172087&rft_id=info:pmid/30873540&rft_oup_id=10.1093/nar/gkz181&rfr_iscdi=true |