Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: In vitro characterization

Stem cell strategies and the use of electrical stimulation (ES) represent promising new frontiers for peripheral nerve regeneration. Composite matrices were fabricated by coating electrospun polycaprolactone/cellulose acetate micro–nanofibers with chitosan and ionically conductive (IC) polymers incl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2019-08, Vol.107 (6), p.1792-1805
Hauptverfasser: Manoukian, Ohan S., Stratton, Scott, Arul, Michael R., Moskow, Joshua, Sardashti, Naseem, Yu, Xiaojun, Rudraiah, Swetha, Kumbar, Sangamesh G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1805
container_issue 6
container_start_page 1792
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 107
creator Manoukian, Ohan S.
Stratton, Scott
Arul, Michael R.
Moskow, Joshua
Sardashti, Naseem
Yu, Xiaojun
Rudraiah, Swetha
Kumbar, Sangamesh G.
description Stem cell strategies and the use of electrical stimulation (ES) represent promising new frontiers for peripheral nerve regeneration. Composite matrices were fabricated by coating electrospun polycaprolactone/cellulose acetate micro–nanofibers with chitosan and ionically conductive (IC) polymers including, sulfonated polyaniline, and lignin sulfonate. These composite matrices were characterized for surface morphology, coating uniformity, ionic conductivity, and mechanical strength to explore as scaffold materials for nerve regeneration in conjunction with ES. Composite matrices measured conductivity in the range of 0.0049–0.0068 mS/m due to the uniform coating of sulfonated polymers on the micro–nanofibers. Thin films (2D) and composite fiber matrices (3D) of IC polymers seeded with human mesenchymal stem cells (hMSCs) were electrically stimulated at 0.5 V, 20 Hz for 1 h daily for 14 days to study the changes in cell viability, morphology, and expression of the neuronal‐like phenotype. In vitro ES lead to changes in hMSCs' fibroblast morphology into elongated neurite‐like structures with cell bodies for ES‐treated and positive control growth factor‐treated groups. Immunofluorescent staining revealed the presence of neuronal markers including β3‐tubulin, microtubule‐associated protein 2, and nestin in response to ES. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1792–1805, 2019.
doi_str_mv 10.1002/jbm.b.34272
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6511498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132741120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4522-909a8df3c127382641bcd1fb837f087168b012b670bfea39041f405d8410b4613</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhlcIREvhxB1Z4oKEEjy294sDEq34KCqCA5wt2zubOvKug70bFP4B_5ppUiLgwMmvNY_fmfFbFI-BL4Fz8WJth6VdSiVqcac4hbIUC9U2cPeoa3lSPMh5TXDFS3m_OJFcQQtle1r8_BzDbsDkHfNx9M6EsGMujt3sJr9FksMmZj8hG8xEFGZmxo5hQHdzNYHlyQ9zMBM9J53MhCtPVB8TGzGRRcIVktoTL9nlyLZ-SpG5a5OMm6j1j33pYXGvNyHjo9vzrPj69s2Xi_eLq0_vLi9eXy2cKoVYtLw1TddLB6KWjagUWNdBbxtZ97ypoWosB2GrmtsejWxp017xsmsUcKsqkGfFq4PvZrYDdg5HGjroTfKDSTsdjdd_V0Z_rVdxq6sSgD6WDJ7dGqT4bcY86cFnhyGYEeOctQApagUgOKFP_0HXcU4jraeFKKGtlJI1Uc8PlEsx54T9cRjg-iZiTRFrq_cRE_3kz_mP7O9MCRAH4LsPuPufl_5w_vH84PoLpia1WQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251964437</pqid></control><display><type>article</type><title>Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: In vitro characterization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Manoukian, Ohan S. ; Stratton, Scott ; Arul, Michael R. ; Moskow, Joshua ; Sardashti, Naseem ; Yu, Xiaojun ; Rudraiah, Swetha ; Kumbar, Sangamesh G.</creator><creatorcontrib>Manoukian, Ohan S. ; Stratton, Scott ; Arul, Michael R. ; Moskow, Joshua ; Sardashti, Naseem ; Yu, Xiaojun ; Rudraiah, Swetha ; Kumbar, Sangamesh G.</creatorcontrib><description>Stem cell strategies and the use of electrical stimulation (ES) represent promising new frontiers for peripheral nerve regeneration. Composite matrices were fabricated by coating electrospun polycaprolactone/cellulose acetate micro–nanofibers with chitosan and ionically conductive (IC) polymers including, sulfonated polyaniline, and lignin sulfonate. These composite matrices were characterized for surface morphology, coating uniformity, ionic conductivity, and mechanical strength to explore as scaffold materials for nerve regeneration in conjunction with ES. Composite matrices measured conductivity in the range of 0.0049–0.0068 mS/m due to the uniform coating of sulfonated polymers on the micro–nanofibers. Thin films (2D) and composite fiber matrices (3D) of IC polymers seeded with human mesenchymal stem cells (hMSCs) were electrically stimulated at 0.5 V, 20 Hz for 1 h daily for 14 days to study the changes in cell viability, morphology, and expression of the neuronal‐like phenotype. In vitro ES lead to changes in hMSCs' fibroblast morphology into elongated neurite‐like structures with cell bodies for ES‐treated and positive control growth factor‐treated groups. Immunofluorescent staining revealed the presence of neuronal markers including β3‐tubulin, microtubule‐associated protein 2, and nestin in response to ES. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1792–1805, 2019.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34272</identifier><identifier>PMID: 30419159</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acetic acid ; Biomedical materials ; Cell viability ; Cellulose acetate ; Chitosan ; Coating ; Coatings ; Conductivity ; Cytology ; Electrical resistivity ; electrical stimulation ; Electrical stimuli ; Elongated structure ; Growth factors ; Integrated circuits ; Ion currents ; ionic conductivity ; Lignin ; Materials research ; Materials science ; Mechanical properties ; Mesenchyme ; micro–nanofiber ; Morphology ; Nanofibers ; nerve regeneration ; Nestin ; Peripheral nerves ; Phenotypes ; Polyanilines ; Polycaprolactone ; Polymers ; Regeneration ; scaffold ; Stem cells ; Stimulation ; Thin films ; Three dimensional composites ; Tubulin ; Two dimensional composites</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2019-08, Vol.107 (6), p.1792-1805</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4522-909a8df3c127382641bcd1fb837f087168b012b670bfea39041f405d8410b4613</citedby><cites>FETCH-LOGICAL-c4522-909a8df3c127382641bcd1fb837f087168b012b670bfea39041f405d8410b4613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.34272$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.34272$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30419159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manoukian, Ohan S.</creatorcontrib><creatorcontrib>Stratton, Scott</creatorcontrib><creatorcontrib>Arul, Michael R.</creatorcontrib><creatorcontrib>Moskow, Joshua</creatorcontrib><creatorcontrib>Sardashti, Naseem</creatorcontrib><creatorcontrib>Yu, Xiaojun</creatorcontrib><creatorcontrib>Rudraiah, Swetha</creatorcontrib><creatorcontrib>Kumbar, Sangamesh G.</creatorcontrib><title>Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: In vitro characterization</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Stem cell strategies and the use of electrical stimulation (ES) represent promising new frontiers for peripheral nerve regeneration. Composite matrices were fabricated by coating electrospun polycaprolactone/cellulose acetate micro–nanofibers with chitosan and ionically conductive (IC) polymers including, sulfonated polyaniline, and lignin sulfonate. These composite matrices were characterized for surface morphology, coating uniformity, ionic conductivity, and mechanical strength to explore as scaffold materials for nerve regeneration in conjunction with ES. Composite matrices measured conductivity in the range of 0.0049–0.0068 mS/m due to the uniform coating of sulfonated polymers on the micro–nanofibers. Thin films (2D) and composite fiber matrices (3D) of IC polymers seeded with human mesenchymal stem cells (hMSCs) were electrically stimulated at 0.5 V, 20 Hz for 1 h daily for 14 days to study the changes in cell viability, morphology, and expression of the neuronal‐like phenotype. In vitro ES lead to changes in hMSCs' fibroblast morphology into elongated neurite‐like structures with cell bodies for ES‐treated and positive control growth factor‐treated groups. Immunofluorescent staining revealed the presence of neuronal markers including β3‐tubulin, microtubule‐associated protein 2, and nestin in response to ES. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1792–1805, 2019.</description><subject>Acetic acid</subject><subject>Biomedical materials</subject><subject>Cell viability</subject><subject>Cellulose acetate</subject><subject>Chitosan</subject><subject>Coating</subject><subject>Coatings</subject><subject>Conductivity</subject><subject>Cytology</subject><subject>Electrical resistivity</subject><subject>electrical stimulation</subject><subject>Electrical stimuli</subject><subject>Elongated structure</subject><subject>Growth factors</subject><subject>Integrated circuits</subject><subject>Ion currents</subject><subject>ionic conductivity</subject><subject>Lignin</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Mesenchyme</subject><subject>micro–nanofiber</subject><subject>Morphology</subject><subject>Nanofibers</subject><subject>nerve regeneration</subject><subject>Nestin</subject><subject>Peripheral nerves</subject><subject>Phenotypes</subject><subject>Polyanilines</subject><subject>Polycaprolactone</subject><subject>Polymers</subject><subject>Regeneration</subject><subject>scaffold</subject><subject>Stem cells</subject><subject>Stimulation</subject><subject>Thin films</subject><subject>Three dimensional composites</subject><subject>Tubulin</subject><subject>Two dimensional composites</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vEzEQhlcIREvhxB1Z4oKEEjy294sDEq34KCqCA5wt2zubOvKug70bFP4B_5ppUiLgwMmvNY_fmfFbFI-BL4Fz8WJth6VdSiVqcac4hbIUC9U2cPeoa3lSPMh5TXDFS3m_OJFcQQtle1r8_BzDbsDkHfNx9M6EsGMujt3sJr9FksMmZj8hG8xEFGZmxo5hQHdzNYHlyQ9zMBM9J53MhCtPVB8TGzGRRcIVktoTL9nlyLZ-SpG5a5OMm6j1j33pYXGvNyHjo9vzrPj69s2Xi_eLq0_vLi9eXy2cKoVYtLw1TddLB6KWjagUWNdBbxtZ97ypoWosB2GrmtsejWxp017xsmsUcKsqkGfFq4PvZrYDdg5HGjroTfKDSTsdjdd_V0Z_rVdxq6sSgD6WDJ7dGqT4bcY86cFnhyGYEeOctQApagUgOKFP_0HXcU4jraeFKKGtlJI1Uc8PlEsx54T9cRjg-iZiTRFrq_cRE_3kz_mP7O9MCRAH4LsPuPufl_5w_vH84PoLpia1WQ</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Manoukian, Ohan S.</creator><creator>Stratton, Scott</creator><creator>Arul, Michael R.</creator><creator>Moskow, Joshua</creator><creator>Sardashti, Naseem</creator><creator>Yu, Xiaojun</creator><creator>Rudraiah, Swetha</creator><creator>Kumbar, Sangamesh G.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201908</creationdate><title>Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: In vitro characterization</title><author>Manoukian, Ohan S. ; Stratton, Scott ; Arul, Michael R. ; Moskow, Joshua ; Sardashti, Naseem ; Yu, Xiaojun ; Rudraiah, Swetha ; Kumbar, Sangamesh G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4522-909a8df3c127382641bcd1fb837f087168b012b670bfea39041f405d8410b4613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetic acid</topic><topic>Biomedical materials</topic><topic>Cell viability</topic><topic>Cellulose acetate</topic><topic>Chitosan</topic><topic>Coating</topic><topic>Coatings</topic><topic>Conductivity</topic><topic>Cytology</topic><topic>Electrical resistivity</topic><topic>electrical stimulation</topic><topic>Electrical stimuli</topic><topic>Elongated structure</topic><topic>Growth factors</topic><topic>Integrated circuits</topic><topic>Ion currents</topic><topic>ionic conductivity</topic><topic>Lignin</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Mesenchyme</topic><topic>micro–nanofiber</topic><topic>Morphology</topic><topic>Nanofibers</topic><topic>nerve regeneration</topic><topic>Nestin</topic><topic>Peripheral nerves</topic><topic>Phenotypes</topic><topic>Polyanilines</topic><topic>Polycaprolactone</topic><topic>Polymers</topic><topic>Regeneration</topic><topic>scaffold</topic><topic>Stem cells</topic><topic>Stimulation</topic><topic>Thin films</topic><topic>Three dimensional composites</topic><topic>Tubulin</topic><topic>Two dimensional composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manoukian, Ohan S.</creatorcontrib><creatorcontrib>Stratton, Scott</creatorcontrib><creatorcontrib>Arul, Michael R.</creatorcontrib><creatorcontrib>Moskow, Joshua</creatorcontrib><creatorcontrib>Sardashti, Naseem</creatorcontrib><creatorcontrib>Yu, Xiaojun</creatorcontrib><creatorcontrib>Rudraiah, Swetha</creatorcontrib><creatorcontrib>Kumbar, Sangamesh G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manoukian, Ohan S.</au><au>Stratton, Scott</au><au>Arul, Michael R.</au><au>Moskow, Joshua</au><au>Sardashti, Naseem</au><au>Yu, Xiaojun</au><au>Rudraiah, Swetha</au><au>Kumbar, Sangamesh G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: In vitro characterization</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2019-08</date><risdate>2019</risdate><volume>107</volume><issue>6</issue><spage>1792</spage><epage>1805</epage><pages>1792-1805</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Stem cell strategies and the use of electrical stimulation (ES) represent promising new frontiers for peripheral nerve regeneration. Composite matrices were fabricated by coating electrospun polycaprolactone/cellulose acetate micro–nanofibers with chitosan and ionically conductive (IC) polymers including, sulfonated polyaniline, and lignin sulfonate. These composite matrices were characterized for surface morphology, coating uniformity, ionic conductivity, and mechanical strength to explore as scaffold materials for nerve regeneration in conjunction with ES. Composite matrices measured conductivity in the range of 0.0049–0.0068 mS/m due to the uniform coating of sulfonated polymers on the micro–nanofibers. Thin films (2D) and composite fiber matrices (3D) of IC polymers seeded with human mesenchymal stem cells (hMSCs) were electrically stimulated at 0.5 V, 20 Hz for 1 h daily for 14 days to study the changes in cell viability, morphology, and expression of the neuronal‐like phenotype. In vitro ES lead to changes in hMSCs' fibroblast morphology into elongated neurite‐like structures with cell bodies for ES‐treated and positive control growth factor‐treated groups. Immunofluorescent staining revealed the presence of neuronal markers including β3‐tubulin, microtubule‐associated protein 2, and nestin in response to ES. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1792–1805, 2019.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30419159</pmid><doi>10.1002/jbm.b.34272</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2019-08, Vol.107 (6), p.1792-1805
issn 1552-4973
1552-4981
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6511498
source Wiley Online Library Journals Frontfile Complete
subjects Acetic acid
Biomedical materials
Cell viability
Cellulose acetate
Chitosan
Coating
Coatings
Conductivity
Cytology
Electrical resistivity
electrical stimulation
Electrical stimuli
Elongated structure
Growth factors
Integrated circuits
Ion currents
ionic conductivity
Lignin
Materials research
Materials science
Mechanical properties
Mesenchyme
micro–nanofiber
Morphology
Nanofibers
nerve regeneration
Nestin
Peripheral nerves
Phenotypes
Polyanilines
Polycaprolactone
Polymers
Regeneration
scaffold
Stem cells
Stimulation
Thin films
Three dimensional composites
Tubulin
Two dimensional composites
title Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: In vitro characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymeric%20ionically%20conductive%20composite%20matrices%20and%20electrical%20stimulation%20strategies%20for%20nerve%20regeneration:%20In%20vitro%20characterization&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Manoukian,%20Ohan%20S.&rft.date=2019-08&rft.volume=107&rft.issue=6&rft.spage=1792&rft.epage=1805&rft.pages=1792-1805&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34272&rft_dat=%3Cproquest_pubme%3E2132741120%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251964437&rft_id=info:pmid/30419159&rfr_iscdi=true