From Bloch oscillations to many-body localization in clean interacting systems
In this work we demonstrate that nonrandom mechanisms that lead to single-particle localization may also lead to many-body localization, even in the absence of disorder. In particular, we consider interacting spins and fermions in the presence of a linear potential. In the noninteracting limit, thes...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-05, Vol.116 (19), p.9269-9274 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9274 |
---|---|
container_issue | 19 |
container_start_page | 9269 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | van Nieuwenburg, Evert Baum, Yuval Refael, Gil |
description | In this work we demonstrate that nonrandom mechanisms that lead to single-particle localization may also lead to many-body localization, even in the absence of disorder. In particular, we consider interacting spins and fermions in the presence of a linear potential. In the noninteracting limit, these models show the well-known Wannier–Stark localization. We analyze the fate of this localization in the presence of interactions. Remarkably, we find that beyond a critical value of the potential gradient these models exhibit nonergodic behavior as indicated by their spectral and dynamical properties. These models, therefore, constitute a class of generic nonrandom models that fail to thermalize. As such, they suggest new directions for experimentally exploring and understanding the phenomena of many-body localization. We supplement our work by showing that by using machine-learning techniques the level statistics of a system may be calculated without generating and diagonalizing the Hamiltonian, which allows a generation of large statistics. |
doi_str_mv | 10.1073/pnas.1819316116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6511026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26705110</jstor_id><sourcerecordid>26705110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-628555da0fb5dba6845409025bfc113d5bb776b70eb37962e1ae196f9fd9fee3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAkUiQuXtDN27MQXJKhaQKrg0rtlO07rVWIvtrfS8tfXy5bl4zQjvd88zdMj5DXCGULPzjdB5zMcUDIUiOIJWSFIbEUn4SlZAdC-HTranZAXOa8BQPIBnpMThoASBrYi365SXJpPc7R3TczWz7MuPobclNgsOuxaE8ddU2U9-5-_pMaHxs5O75fikrbFh9sm73JxS35Jnk16zu7V4zwlN1eXNxdf2uvvn79efLxubdex0go6cM5HDZPho9Fi6HgHEig3k0VkIzem74XpwRnWS0EdaodSTHIa5eQcOyUfDrabrVncaF0oSc9qk_yi005F7dW_SvB36jbeK8ERgYpq8P7RIMUfW5eLWny2rqYPLm6zohQ5UAROK_ruP3QdtynUdJViMICs31fq_EDZFHNObjo-g6D2Val9VepPVfXi7d8Zjvzvbirw5gCsc4npqFPRwz4FewD2XJp0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230809845</pqid></control><display><type>article</type><title>From Bloch oscillations to many-body localization in clean interacting systems</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>van Nieuwenburg, Evert ; Baum, Yuval ; Refael, Gil</creator><creatorcontrib>van Nieuwenburg, Evert ; Baum, Yuval ; Refael, Gil</creatorcontrib><description>In this work we demonstrate that nonrandom mechanisms that lead to single-particle localization may also lead to many-body localization, even in the absence of disorder. In particular, we consider interacting spins and fermions in the presence of a linear potential. In the noninteracting limit, these models show the well-known Wannier–Stark localization. We analyze the fate of this localization in the presence of interactions. Remarkably, we find that beyond a critical value of the potential gradient these models exhibit nonergodic behavior as indicated by their spectral and dynamical properties. These models, therefore, constitute a class of generic nonrandom models that fail to thermalize. As such, they suggest new directions for experimentally exploring and understanding the phenomena of many-body localization. We supplement our work by showing that by using machine-learning techniques the level statistics of a system may be calculated without generating and diagonalizing the Hamiltonian, which allows a generation of large statistics.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1819316116</identifier><identifier>PMID: 31019083</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Fermions ; Learning algorithms ; Localization ; Machine learning ; Many body interactions ; Oscillations ; Physical Sciences ; Statistics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-05, Vol.116 (19), p.9269-9274</ispartof><rights>Copyright National Academy of Sciences May 7, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-628555da0fb5dba6845409025bfc113d5bb776b70eb37962e1ae196f9fd9fee3</citedby><cites>FETCH-LOGICAL-c443t-628555da0fb5dba6845409025bfc113d5bb776b70eb37962e1ae196f9fd9fee3</cites><orcidid>0000-0003-0323-0031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26705110$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26705110$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31019083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Nieuwenburg, Evert</creatorcontrib><creatorcontrib>Baum, Yuval</creatorcontrib><creatorcontrib>Refael, Gil</creatorcontrib><title>From Bloch oscillations to many-body localization in clean interacting systems</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In this work we demonstrate that nonrandom mechanisms that lead to single-particle localization may also lead to many-body localization, even in the absence of disorder. In particular, we consider interacting spins and fermions in the presence of a linear potential. In the noninteracting limit, these models show the well-known Wannier–Stark localization. We analyze the fate of this localization in the presence of interactions. Remarkably, we find that beyond a critical value of the potential gradient these models exhibit nonergodic behavior as indicated by their spectral and dynamical properties. These models, therefore, constitute a class of generic nonrandom models that fail to thermalize. As such, they suggest new directions for experimentally exploring and understanding the phenomena of many-body localization. We supplement our work by showing that by using machine-learning techniques the level statistics of a system may be calculated without generating and diagonalizing the Hamiltonian, which allows a generation of large statistics.</description><subject>Fermions</subject><subject>Learning algorithms</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Many body interactions</subject><subject>Oscillations</subject><subject>Physical Sciences</subject><subject>Statistics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EokvhzAkUiQuXtDN27MQXJKhaQKrg0rtlO07rVWIvtrfS8tfXy5bl4zQjvd88zdMj5DXCGULPzjdB5zMcUDIUiOIJWSFIbEUn4SlZAdC-HTranZAXOa8BQPIBnpMThoASBrYi365SXJpPc7R3TczWz7MuPobclNgsOuxaE8ddU2U9-5-_pMaHxs5O75fikrbFh9sm73JxS35Jnk16zu7V4zwlN1eXNxdf2uvvn79efLxubdex0go6cM5HDZPho9Fi6HgHEig3k0VkIzem74XpwRnWS0EdaodSTHIa5eQcOyUfDrabrVncaF0oSc9qk_yi005F7dW_SvB36jbeK8ERgYpq8P7RIMUfW5eLWny2rqYPLm6zohQ5UAROK_ruP3QdtynUdJViMICs31fq_EDZFHNObjo-g6D2Val9VepPVfXi7d8Zjvzvbirw5gCsc4npqFPRwz4FewD2XJp0</recordid><startdate>20190507</startdate><enddate>20190507</enddate><creator>van Nieuwenburg, Evert</creator><creator>Baum, Yuval</creator><creator>Refael, Gil</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0323-0031</orcidid></search><sort><creationdate>20190507</creationdate><title>From Bloch oscillations to many-body localization in clean interacting systems</title><author>van Nieuwenburg, Evert ; Baum, Yuval ; Refael, Gil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-628555da0fb5dba6845409025bfc113d5bb776b70eb37962e1ae196f9fd9fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Fermions</topic><topic>Learning algorithms</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Many body interactions</topic><topic>Oscillations</topic><topic>Physical Sciences</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Nieuwenburg, Evert</creatorcontrib><creatorcontrib>Baum, Yuval</creatorcontrib><creatorcontrib>Refael, Gil</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Nieuwenburg, Evert</au><au>Baum, Yuval</au><au>Refael, Gil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Bloch oscillations to many-body localization in clean interacting systems</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-05-07</date><risdate>2019</risdate><volume>116</volume><issue>19</issue><spage>9269</spage><epage>9274</epage><pages>9269-9274</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In this work we demonstrate that nonrandom mechanisms that lead to single-particle localization may also lead to many-body localization, even in the absence of disorder. In particular, we consider interacting spins and fermions in the presence of a linear potential. In the noninteracting limit, these models show the well-known Wannier–Stark localization. We analyze the fate of this localization in the presence of interactions. Remarkably, we find that beyond a critical value of the potential gradient these models exhibit nonergodic behavior as indicated by their spectral and dynamical properties. These models, therefore, constitute a class of generic nonrandom models that fail to thermalize. As such, they suggest new directions for experimentally exploring and understanding the phenomena of many-body localization. We supplement our work by showing that by using machine-learning techniques the level statistics of a system may be calculated without generating and diagonalizing the Hamiltonian, which allows a generation of large statistics.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31019083</pmid><doi>10.1073/pnas.1819316116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0323-0031</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-05, Vol.116 (19), p.9269-9274 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6511026 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Fermions Learning algorithms Localization Machine learning Many body interactions Oscillations Physical Sciences Statistics |
title | From Bloch oscillations to many-body localization in clean interacting systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Bloch%20oscillations%20to%20many-body%20localization%20in%20clean%20interacting%20systems&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=van%20Nieuwenburg,%20Evert&rft.date=2019-05-07&rft.volume=116&rft.issue=19&rft.spage=9269&rft.epage=9274&rft.pages=9269-9274&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1819316116&rft_dat=%3Cjstor_pubme%3E26705110%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230809845&rft_id=info:pmid/31019083&rft_jstor_id=26705110&rfr_iscdi=true |