The rhizosphere of aquatic plants is a habitat for cable bacteria

ABSTRACT Cable bacteria belonging to the family Desulfobulbaceae couple sulfide oxidation and oxygen reduction by long-distance electron transfer over centimeter distances in marine and freshwater sediments. In such habitats, aquatic plants can release oxygen into the rhizosphere. Hence, the rhizosp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology ecology 2019-06, Vol.95 (6), p.1
Hauptverfasser: Scholz, Vincent V, Müller, Hubert, Koren, Klaus, Nielsen, Lars Peter, Meckenstock, Rainer U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1
container_title FEMS microbiology ecology
container_volume 95
creator Scholz, Vincent V
Müller, Hubert
Koren, Klaus
Nielsen, Lars Peter
Meckenstock, Rainer U
description ABSTRACT Cable bacteria belonging to the family Desulfobulbaceae couple sulfide oxidation and oxygen reduction by long-distance electron transfer over centimeter distances in marine and freshwater sediments. In such habitats, aquatic plants can release oxygen into the rhizosphere. Hence, the rhizosphere constitutes an ideal habitat for cable bacteria, which have been reported on seagrass roots recently. Here, we employ experimental approaches to investigate activity, abundance, and spatial orientation of cable bacteria next to the roots of the freshwater plant Littorella uniflora. Fluorescence in situ hybridization (FISH), in combination with oxygen-sensitive planar optodes, demonstrated that cable bacteria densities are enriched at the oxic–anoxic transition zone next to roots compared to the bulk sediment in the same depth. Scanning electron microscopy showed cable bacteria along root hairs. Electric potential measurements showed a lateral electric field over centimeters from the roots, indicating cable bacteria activity. In addition, FISH revealed that cable bacteria were present in the rhizosphere of Oryza sativa (rice), Lobelia cardinalis and Salicornia europaea. Hence, the interaction of cable bacteria with aquatic plants of different growth forms and habitats indicates that the plant root–cable bacteria interaction might be a common property of aquatic plant rhizospheres. Cable bacteria are ubiquitous and active in the rhizosphere of aquatic plants.
doi_str_mv 10.1093/femsec/fiz062
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6510695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A606859098</galeid><oup_id>10.1093/femsec/fiz062</oup_id><sourcerecordid>A606859098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-88586559707d0287f354fc95647b76bd1d954c003863bb8f37c4474d1e25ba883</originalsourceid><addsrcrecordid>eNqFkstrHSEYxYfQkle77LYI3XQzie_HpnAJbVMIZJOuRR3NGGbGic4Ukr--Xm6aRwkEF4r-voPncJrmE4InCCpyGvxYvDsN8R5yvNccIiZoyxVF756dD5qjUm4gRIxQuN8cEAQZxZQdNpur3oPcx_tU5t5nD1IA5nY1S3RgHsy0FBALMKA3Ni5mASFl4IwdPLDGLT5H86F5H8xQ_MeH_bj5_eP71dl5e3H589fZ5qJ1jMqllZJJzpgSUHQQSxEIo8EpxqmwgtsOdYpRByGRnFgrAxGOUkE75DGzRkpy3Hzb6c6rHX3n_LRkM-g5x9HkO51M1C9fptjr6_RHc4YgV6wKfH0QyOl29WXRYyzOD9WlT2vRmDBMEZOCv41irDCRitKKfvkPvUlrnmoSVVApxaBU6om6NoPXcQqpftFtRfWGQy6Zgmpr8eQVqq7Oj9GlyYdY718MtLsBl1Mp2YfHOBDU23roXT30rh6V__w8w0f6Xx-ejKd1fkPrL82wwj0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399950899</pqid></control><display><type>article</type><title>The rhizosphere of aquatic plants is a habitat for cable bacteria</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Oxford Open Access Journals</source><creator>Scholz, Vincent V ; Müller, Hubert ; Koren, Klaus ; Nielsen, Lars Peter ; Meckenstock, Rainer U</creator><creatorcontrib>Scholz, Vincent V ; Müller, Hubert ; Koren, Klaus ; Nielsen, Lars Peter ; Meckenstock, Rainer U</creatorcontrib><description>ABSTRACT Cable bacteria belonging to the family Desulfobulbaceae couple sulfide oxidation and oxygen reduction by long-distance electron transfer over centimeter distances in marine and freshwater sediments. In such habitats, aquatic plants can release oxygen into the rhizosphere. Hence, the rhizosphere constitutes an ideal habitat for cable bacteria, which have been reported on seagrass roots recently. Here, we employ experimental approaches to investigate activity, abundance, and spatial orientation of cable bacteria next to the roots of the freshwater plant Littorella uniflora. Fluorescence in situ hybridization (FISH), in combination with oxygen-sensitive planar optodes, demonstrated that cable bacteria densities are enriched at the oxic–anoxic transition zone next to roots compared to the bulk sediment in the same depth. Scanning electron microscopy showed cable bacteria along root hairs. Electric potential measurements showed a lateral electric field over centimeters from the roots, indicating cable bacteria activity. In addition, FISH revealed that cable bacteria were present in the rhizosphere of Oryza sativa (rice), Lobelia cardinalis and Salicornia europaea. Hence, the interaction of cable bacteria with aquatic plants of different growth forms and habitats indicates that the plant root–cable bacteria interaction might be a common property of aquatic plant rhizospheres. Cable bacteria are ubiquitous and active in the rhizosphere of aquatic plants.</description><identifier>ISSN: 1574-6941</identifier><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1093/femsec/fiz062</identifier><identifier>PMID: 31054245</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Aquatic habitats ; Aquatic plants ; Bacteria ; chemical reduction ; Deltaproteobacteria - genetics ; Deltaproteobacteria - isolation &amp; purification ; Desulfobulbaceae ; Ecology ; Editor's Choice ; electric field ; Electric fields ; Electric potential ; Electron transfer ; Electron Transport ; Fluorescence ; Fluorescence in situ hybridization ; Fresh Water ; freshwater ; Freshwater plants ; Geologic Sediments - microbiology ; Habitats ; In Situ Hybridization, Fluorescence ; Littorella uniflora ; Lobelia cardinalis ; Microbiological research ; Microbiology ; Observations ; Oryza sativa ; Oxidation ; Oxidation-Reduction ; Oxygen ; Oxygen enrichment ; Plant roots ; Plant Roots - microbiology ; Rhizosphere ; rice ; Root hairs ; Roots ; Salicornia europaea ; Scanning electron microscopy ; seagrasses ; Sediments ; Sulfate-reducing bacteria ; Sulfides ; Transition zone</subject><ispartof>FEMS microbiology ecology, 2019-06, Vol.95 (6), p.1</ispartof><rights>FEMS 2019. 2019</rights><rights>FEMS 2019.</rights><rights>COPYRIGHT 2019 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-88586559707d0287f354fc95647b76bd1d954c003863bb8f37c4474d1e25ba883</citedby><cites>FETCH-LOGICAL-c548t-88586559707d0287f354fc95647b76bd1d954c003863bb8f37c4474d1e25ba883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510695/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510695/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31054245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scholz, Vincent V</creatorcontrib><creatorcontrib>Müller, Hubert</creatorcontrib><creatorcontrib>Koren, Klaus</creatorcontrib><creatorcontrib>Nielsen, Lars Peter</creatorcontrib><creatorcontrib>Meckenstock, Rainer U</creatorcontrib><title>The rhizosphere of aquatic plants is a habitat for cable bacteria</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>ABSTRACT Cable bacteria belonging to the family Desulfobulbaceae couple sulfide oxidation and oxygen reduction by long-distance electron transfer over centimeter distances in marine and freshwater sediments. In such habitats, aquatic plants can release oxygen into the rhizosphere. Hence, the rhizosphere constitutes an ideal habitat for cable bacteria, which have been reported on seagrass roots recently. Here, we employ experimental approaches to investigate activity, abundance, and spatial orientation of cable bacteria next to the roots of the freshwater plant Littorella uniflora. Fluorescence in situ hybridization (FISH), in combination with oxygen-sensitive planar optodes, demonstrated that cable bacteria densities are enriched at the oxic–anoxic transition zone next to roots compared to the bulk sediment in the same depth. Scanning electron microscopy showed cable bacteria along root hairs. Electric potential measurements showed a lateral electric field over centimeters from the roots, indicating cable bacteria activity. In addition, FISH revealed that cable bacteria were present in the rhizosphere of Oryza sativa (rice), Lobelia cardinalis and Salicornia europaea. Hence, the interaction of cable bacteria with aquatic plants of different growth forms and habitats indicates that the plant root–cable bacteria interaction might be a common property of aquatic plant rhizospheres. Cable bacteria are ubiquitous and active in the rhizosphere of aquatic plants.</description><subject>Aquatic habitats</subject><subject>Aquatic plants</subject><subject>Bacteria</subject><subject>chemical reduction</subject><subject>Deltaproteobacteria - genetics</subject><subject>Deltaproteobacteria - isolation &amp; purification</subject><subject>Desulfobulbaceae</subject><subject>Ecology</subject><subject>Editor's Choice</subject><subject>electric field</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electron transfer</subject><subject>Electron Transport</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Fresh Water</subject><subject>freshwater</subject><subject>Freshwater plants</subject><subject>Geologic Sediments - microbiology</subject><subject>Habitats</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Littorella uniflora</subject><subject>Lobelia cardinalis</subject><subject>Microbiological research</subject><subject>Microbiology</subject><subject>Observations</subject><subject>Oryza sativa</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxygen</subject><subject>Oxygen enrichment</subject><subject>Plant roots</subject><subject>Plant Roots - microbiology</subject><subject>Rhizosphere</subject><subject>rice</subject><subject>Root hairs</subject><subject>Roots</subject><subject>Salicornia europaea</subject><subject>Scanning electron microscopy</subject><subject>seagrasses</subject><subject>Sediments</subject><subject>Sulfate-reducing bacteria</subject><subject>Sulfides</subject><subject>Transition zone</subject><issn>1574-6941</issn><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkstrHSEYxYfQkle77LYI3XQzie_HpnAJbVMIZJOuRR3NGGbGic4Ukr--Xm6aRwkEF4r-voPncJrmE4InCCpyGvxYvDsN8R5yvNccIiZoyxVF756dD5qjUm4gRIxQuN8cEAQZxZQdNpur3oPcx_tU5t5nD1IA5nY1S3RgHsy0FBALMKA3Ni5mASFl4IwdPLDGLT5H86F5H8xQ_MeH_bj5_eP71dl5e3H589fZ5qJ1jMqllZJJzpgSUHQQSxEIo8EpxqmwgtsOdYpRByGRnFgrAxGOUkE75DGzRkpy3Hzb6c6rHX3n_LRkM-g5x9HkO51M1C9fptjr6_RHc4YgV6wKfH0QyOl29WXRYyzOD9WlT2vRmDBMEZOCv41irDCRitKKfvkPvUlrnmoSVVApxaBU6om6NoPXcQqpftFtRfWGQy6Zgmpr8eQVqq7Oj9GlyYdY718MtLsBl1Mp2YfHOBDU23roXT30rh6V__w8w0f6Xx-ejKd1fkPrL82wwj0</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Scholz, Vincent V</creator><creator>Müller, Hubert</creator><creator>Koren, Klaus</creator><creator>Nielsen, Lars Peter</creator><creator>Meckenstock, Rainer U</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190601</creationdate><title>The rhizosphere of aquatic plants is a habitat for cable bacteria</title><author>Scholz, Vincent V ; Müller, Hubert ; Koren, Klaus ; Nielsen, Lars Peter ; Meckenstock, Rainer U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-88586559707d0287f354fc95647b76bd1d954c003863bb8f37c4474d1e25ba883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aquatic habitats</topic><topic>Aquatic plants</topic><topic>Bacteria</topic><topic>chemical reduction</topic><topic>Deltaproteobacteria - genetics</topic><topic>Deltaproteobacteria - isolation &amp; purification</topic><topic>Desulfobulbaceae</topic><topic>Ecology</topic><topic>Editor's Choice</topic><topic>electric field</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electron transfer</topic><topic>Electron Transport</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Fresh Water</topic><topic>freshwater</topic><topic>Freshwater plants</topic><topic>Geologic Sediments - microbiology</topic><topic>Habitats</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Littorella uniflora</topic><topic>Lobelia cardinalis</topic><topic>Microbiological research</topic><topic>Microbiology</topic><topic>Observations</topic><topic>Oryza sativa</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxygen</topic><topic>Oxygen enrichment</topic><topic>Plant roots</topic><topic>Plant Roots - microbiology</topic><topic>Rhizosphere</topic><topic>rice</topic><topic>Root hairs</topic><topic>Roots</topic><topic>Salicornia europaea</topic><topic>Scanning electron microscopy</topic><topic>seagrasses</topic><topic>Sediments</topic><topic>Sulfate-reducing bacteria</topic><topic>Sulfides</topic><topic>Transition zone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholz, Vincent V</creatorcontrib><creatorcontrib>Müller, Hubert</creatorcontrib><creatorcontrib>Koren, Klaus</creatorcontrib><creatorcontrib>Nielsen, Lars Peter</creatorcontrib><creatorcontrib>Meckenstock, Rainer U</creatorcontrib><collection>Oxford Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholz, Vincent V</au><au>Müller, Hubert</au><au>Koren, Klaus</au><au>Nielsen, Lars Peter</au><au>Meckenstock, Rainer U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The rhizosphere of aquatic plants is a habitat for cable bacteria</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>95</volume><issue>6</issue><spage>1</spage><pages>1-</pages><issn>1574-6941</issn><issn>0168-6496</issn><eissn>1574-6941</eissn><abstract>ABSTRACT Cable bacteria belonging to the family Desulfobulbaceae couple sulfide oxidation and oxygen reduction by long-distance electron transfer over centimeter distances in marine and freshwater sediments. In such habitats, aquatic plants can release oxygen into the rhizosphere. Hence, the rhizosphere constitutes an ideal habitat for cable bacteria, which have been reported on seagrass roots recently. Here, we employ experimental approaches to investigate activity, abundance, and spatial orientation of cable bacteria next to the roots of the freshwater plant Littorella uniflora. Fluorescence in situ hybridization (FISH), in combination with oxygen-sensitive planar optodes, demonstrated that cable bacteria densities are enriched at the oxic–anoxic transition zone next to roots compared to the bulk sediment in the same depth. Scanning electron microscopy showed cable bacteria along root hairs. Electric potential measurements showed a lateral electric field over centimeters from the roots, indicating cable bacteria activity. In addition, FISH revealed that cable bacteria were present in the rhizosphere of Oryza sativa (rice), Lobelia cardinalis and Salicornia europaea. Hence, the interaction of cable bacteria with aquatic plants of different growth forms and habitats indicates that the plant root–cable bacteria interaction might be a common property of aquatic plant rhizospheres. Cable bacteria are ubiquitous and active in the rhizosphere of aquatic plants.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31054245</pmid><doi>10.1093/femsec/fiz062</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-6941
ispartof FEMS microbiology ecology, 2019-06, Vol.95 (6), p.1
issn 1574-6941
0168-6496
1574-6941
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6510695
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Oxford Open Access Journals
subjects Aquatic habitats
Aquatic plants
Bacteria
chemical reduction
Deltaproteobacteria - genetics
Deltaproteobacteria - isolation & purification
Desulfobulbaceae
Ecology
Editor's Choice
electric field
Electric fields
Electric potential
Electron transfer
Electron Transport
Fluorescence
Fluorescence in situ hybridization
Fresh Water
freshwater
Freshwater plants
Geologic Sediments - microbiology
Habitats
In Situ Hybridization, Fluorescence
Littorella uniflora
Lobelia cardinalis
Microbiological research
Microbiology
Observations
Oryza sativa
Oxidation
Oxidation-Reduction
Oxygen
Oxygen enrichment
Plant roots
Plant Roots - microbiology
Rhizosphere
rice
Root hairs
Roots
Salicornia europaea
Scanning electron microscopy
seagrasses
Sediments
Sulfate-reducing bacteria
Sulfides
Transition zone
title The rhizosphere of aquatic plants is a habitat for cable bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20rhizosphere%20of%20aquatic%20plants%20is%20a%20habitat%20for%20cable%20bacteria&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Scholz,%20Vincent%20V&rft.date=2019-06-01&rft.volume=95&rft.issue=6&rft.spage=1&rft.pages=1-&rft.issn=1574-6941&rft.eissn=1574-6941&rft_id=info:doi/10.1093/femsec/fiz062&rft_dat=%3Cgale_pubme%3EA606859098%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399950899&rft_id=info:pmid/31054245&rft_galeid=A606859098&rft_oup_id=10.1093/femsec/fiz062&rfr_iscdi=true