Structure and interactions of the archaeal motility repression module ArnA–ArnB that modulates archaellum gene expression in Sulfolobus acidocaldarius
Phosphorylation-dependent interactions play crucial regulatory roles in all domains of life. Forkhead-associated (FHA) and von Willebrand type A (vWA) domains are involved in several phosphorylation-dependent processes of multiprotein complex assemblies. Although well-studied in eukaryotes and bacte...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2019-05, Vol.294 (18), p.7460-7471 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7471 |
---|---|
container_issue | 18 |
container_start_page | 7460 |
container_title | The Journal of biological chemistry |
container_volume | 294 |
creator | Hoffmann, Lena Anders, Katrin Bischof, Lisa F. Ye, Xing Reimann, Julia Khadouma, Sunia Pham, Trong K. van der Does, Chris Wright, Phillip C. Essen, Lars-Oliver Albers, Sonja-Verena |
description | Phosphorylation-dependent interactions play crucial regulatory roles in all domains of life. Forkhead-associated (FHA) and von Willebrand type A (vWA) domains are involved in several phosphorylation-dependent processes of multiprotein complex assemblies. Although well-studied in eukaryotes and bacteria, the structural and functional contexts of these domains are not yet understood in Archaea. Here, we report the structural base for such an interacting pair of FHA and vWA domain-containing proteins, ArnA and ArnB, in the thermoacidophilic archaeon Sulfolobus acidocaldarius, where they act synergistically and negatively modulate motility. The structure of the FHA domain of ArnA at 1.75 Å resolution revealed that it belongs to the subclass of FHA domains, which recognizes double-pSer/pThr motifs. We also solved the 1.5 Å resolution crystal structure of the ArnB paralog vWA2, disclosing a complex topology comprising the vWA domain, a β-sandwich fold, and a C-terminal helix bundle. We further show that ArnA binds to the C terminus of ArnB, which harbors all the phosphorylation sites identified to date and is important for the function of ArnB in archaellum regulation. We also observed that expression levels of the archaellum components in response to changes in nutrient conditions are independent of changes in ArnA and ArnB levels and that a strong interaction between ArnA and ArnB observed during growth on rich medium sequentially diminishes after nutrient limitation. In summary, our findings unravel the structural features in ArnA and ArnB important for their interaction and functional archaellum expression and reveal how nutrient conditions affect this interaction. |
doi_str_mv | 10.1074/jbc.RA119.007709 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6509490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820368198</els_id><sourcerecordid>2196533055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-60af5d841b0730c6b37294e4aabd6b092864473ac2e0c694703f32c92afdefad3</originalsourceid><addsrcrecordid>eNp1kc2KFDEUhYMoTju6dyW1dFPtTSX1ExdCz-AfDAiOgruQSm5NZ0gnbZIanJ3v4Mbn80mMVtvowmwu3Pudc5McQh5TWFPo-bPrUa_fbygVa4C-B3GHrCgMrGYt_XSXrAAaWoumHU7Ig5SuoRwu6H1ywkBAM1C2It8vc5x1niNWypvK-oxR6WyDT1WYqrwt_ai3CpWrdiFbZ_NtFXEfMaUClZ6ZHVab6Dc_vn4r5axoVF76KmM6yJ2bd9UVeqzwy1FsfXU5uym4MM4F1NYErZxR0c7pIbk3KZfw0aGeko-vXn44f1NfvHv99nxzUWsueK47UFNrBk5H6BnobmR9IzhypUbTjSCaoeO8Z0o3WKaC98Am1mjRqMngpAw7JS8W3_087tBo9DkqJ_fR7lS8lUFZ-e_E2628Cjeya0FwAcXg6cEghs8zpix3NunyYOUxzEk2VHQtY9C2BYUF1TGkFHE6rqEgfwUqS6Dyd6ByCbRInvx9vaPgT4IFeL4AWD7pxmKUSVv0Go2NqLM0wf7f_Sc3Ybak</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196533055</pqid></control><display><type>article</type><title>Structure and interactions of the archaeal motility repression module ArnA–ArnB that modulates archaellum gene expression in Sulfolobus acidocaldarius</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hoffmann, Lena ; Anders, Katrin ; Bischof, Lisa F. ; Ye, Xing ; Reimann, Julia ; Khadouma, Sunia ; Pham, Trong K. ; van der Does, Chris ; Wright, Phillip C. ; Essen, Lars-Oliver ; Albers, Sonja-Verena</creator><creatorcontrib>Hoffmann, Lena ; Anders, Katrin ; Bischof, Lisa F. ; Ye, Xing ; Reimann, Julia ; Khadouma, Sunia ; Pham, Trong K. ; van der Does, Chris ; Wright, Phillip C. ; Essen, Lars-Oliver ; Albers, Sonja-Verena</creatorcontrib><description>Phosphorylation-dependent interactions play crucial regulatory roles in all domains of life. Forkhead-associated (FHA) and von Willebrand type A (vWA) domains are involved in several phosphorylation-dependent processes of multiprotein complex assemblies. Although well-studied in eukaryotes and bacteria, the structural and functional contexts of these domains are not yet understood in Archaea. Here, we report the structural base for such an interacting pair of FHA and vWA domain-containing proteins, ArnA and ArnB, in the thermoacidophilic archaeon Sulfolobus acidocaldarius, where they act synergistically and negatively modulate motility. The structure of the FHA domain of ArnA at 1.75 Å resolution revealed that it belongs to the subclass of FHA domains, which recognizes double-pSer/pThr motifs. We also solved the 1.5 Å resolution crystal structure of the ArnB paralog vWA2, disclosing a complex topology comprising the vWA domain, a β-sandwich fold, and a C-terminal helix bundle. We further show that ArnA binds to the C terminus of ArnB, which harbors all the phosphorylation sites identified to date and is important for the function of ArnB in archaellum regulation. We also observed that expression levels of the archaellum components in response to changes in nutrient conditions are independent of changes in ArnA and ArnB levels and that a strong interaction between ArnA and ArnB observed during growth on rich medium sequentially diminishes after nutrient limitation. In summary, our findings unravel the structural features in ArnA and ArnB important for their interaction and functional archaellum expression and reveal how nutrient conditions affect this interaction.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.007709</identifier><identifier>PMID: 30902813</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Archaea ; Archaeal Proteins - chemistry ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; cell motility ; Crystallography, X-Ray ; Culture Media ; Gene Expression Regulation, Archaeal ; Genes, Archaeal ; Microbiology ; Phosphorylation ; Protein Conformation ; protein phosphorylation ; signal transduction ; Sulfolobus acidocaldarius - genetics ; Sulfolobus acidocaldarius - metabolism ; transcription regulation</subject><ispartof>The Journal of biological chemistry, 2019-05, Vol.294 (18), p.7460-7471</ispartof><rights>2019 © 2019 Hoffmann et al.</rights><rights>2019 Hoffmann et al.</rights><rights>2019 Hoffmann et al. 2019 Hoffmann et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-60af5d841b0730c6b37294e4aabd6b092864473ac2e0c694703f32c92afdefad3</citedby><cites>FETCH-LOGICAL-c494t-60af5d841b0730c6b37294e4aabd6b092864473ac2e0c694703f32c92afdefad3</cites><orcidid>0000-0003-2459-2226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509490/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509490/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30902813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoffmann, Lena</creatorcontrib><creatorcontrib>Anders, Katrin</creatorcontrib><creatorcontrib>Bischof, Lisa F.</creatorcontrib><creatorcontrib>Ye, Xing</creatorcontrib><creatorcontrib>Reimann, Julia</creatorcontrib><creatorcontrib>Khadouma, Sunia</creatorcontrib><creatorcontrib>Pham, Trong K.</creatorcontrib><creatorcontrib>van der Does, Chris</creatorcontrib><creatorcontrib>Wright, Phillip C.</creatorcontrib><creatorcontrib>Essen, Lars-Oliver</creatorcontrib><creatorcontrib>Albers, Sonja-Verena</creatorcontrib><title>Structure and interactions of the archaeal motility repression module ArnA–ArnB that modulates archaellum gene expression in Sulfolobus acidocaldarius</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Phosphorylation-dependent interactions play crucial regulatory roles in all domains of life. Forkhead-associated (FHA) and von Willebrand type A (vWA) domains are involved in several phosphorylation-dependent processes of multiprotein complex assemblies. Although well-studied in eukaryotes and bacteria, the structural and functional contexts of these domains are not yet understood in Archaea. Here, we report the structural base for such an interacting pair of FHA and vWA domain-containing proteins, ArnA and ArnB, in the thermoacidophilic archaeon Sulfolobus acidocaldarius, where they act synergistically and negatively modulate motility. The structure of the FHA domain of ArnA at 1.75 Å resolution revealed that it belongs to the subclass of FHA domains, which recognizes double-pSer/pThr motifs. We also solved the 1.5 Å resolution crystal structure of the ArnB paralog vWA2, disclosing a complex topology comprising the vWA domain, a β-sandwich fold, and a C-terminal helix bundle. We further show that ArnA binds to the C terminus of ArnB, which harbors all the phosphorylation sites identified to date and is important for the function of ArnB in archaellum regulation. We also observed that expression levels of the archaellum components in response to changes in nutrient conditions are independent of changes in ArnA and ArnB levels and that a strong interaction between ArnA and ArnB observed during growth on rich medium sequentially diminishes after nutrient limitation. In summary, our findings unravel the structural features in ArnA and ArnB important for their interaction and functional archaellum expression and reveal how nutrient conditions affect this interaction.</description><subject>Archaea</subject><subject>Archaeal Proteins - chemistry</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>cell motility</subject><subject>Crystallography, X-Ray</subject><subject>Culture Media</subject><subject>Gene Expression Regulation, Archaeal</subject><subject>Genes, Archaeal</subject><subject>Microbiology</subject><subject>Phosphorylation</subject><subject>Protein Conformation</subject><subject>protein phosphorylation</subject><subject>signal transduction</subject><subject>Sulfolobus acidocaldarius - genetics</subject><subject>Sulfolobus acidocaldarius - metabolism</subject><subject>transcription regulation</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc2KFDEUhYMoTju6dyW1dFPtTSX1ExdCz-AfDAiOgruQSm5NZ0gnbZIanJ3v4Mbn80mMVtvowmwu3Pudc5McQh5TWFPo-bPrUa_fbygVa4C-B3GHrCgMrGYt_XSXrAAaWoumHU7Ig5SuoRwu6H1ywkBAM1C2It8vc5x1niNWypvK-oxR6WyDT1WYqrwt_ai3CpWrdiFbZ_NtFXEfMaUClZ6ZHVab6Dc_vn4r5axoVF76KmM6yJ2bd9UVeqzwy1FsfXU5uym4MM4F1NYErZxR0c7pIbk3KZfw0aGeko-vXn44f1NfvHv99nxzUWsueK47UFNrBk5H6BnobmR9IzhypUbTjSCaoeO8Z0o3WKaC98Am1mjRqMngpAw7JS8W3_087tBo9DkqJ_fR7lS8lUFZ-e_E2628Cjeya0FwAcXg6cEghs8zpix3NunyYOUxzEk2VHQtY9C2BYUF1TGkFHE6rqEgfwUqS6Dyd6ByCbRInvx9vaPgT4IFeL4AWD7pxmKUSVv0Go2NqLM0wf7f_Sc3Ybak</recordid><startdate>20190503</startdate><enddate>20190503</enddate><creator>Hoffmann, Lena</creator><creator>Anders, Katrin</creator><creator>Bischof, Lisa F.</creator><creator>Ye, Xing</creator><creator>Reimann, Julia</creator><creator>Khadouma, Sunia</creator><creator>Pham, Trong K.</creator><creator>van der Does, Chris</creator><creator>Wright, Phillip C.</creator><creator>Essen, Lars-Oliver</creator><creator>Albers, Sonja-Verena</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2459-2226</orcidid></search><sort><creationdate>20190503</creationdate><title>Structure and interactions of the archaeal motility repression module ArnA–ArnB that modulates archaellum gene expression in Sulfolobus acidocaldarius</title><author>Hoffmann, Lena ; Anders, Katrin ; Bischof, Lisa F. ; Ye, Xing ; Reimann, Julia ; Khadouma, Sunia ; Pham, Trong K. ; van der Does, Chris ; Wright, Phillip C. ; Essen, Lars-Oliver ; Albers, Sonja-Verena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-60af5d841b0730c6b37294e4aabd6b092864473ac2e0c694703f32c92afdefad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Archaea</topic><topic>Archaeal Proteins - chemistry</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>cell motility</topic><topic>Crystallography, X-Ray</topic><topic>Culture Media</topic><topic>Gene Expression Regulation, Archaeal</topic><topic>Genes, Archaeal</topic><topic>Microbiology</topic><topic>Phosphorylation</topic><topic>Protein Conformation</topic><topic>protein phosphorylation</topic><topic>signal transduction</topic><topic>Sulfolobus acidocaldarius - genetics</topic><topic>Sulfolobus acidocaldarius - metabolism</topic><topic>transcription regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffmann, Lena</creatorcontrib><creatorcontrib>Anders, Katrin</creatorcontrib><creatorcontrib>Bischof, Lisa F.</creatorcontrib><creatorcontrib>Ye, Xing</creatorcontrib><creatorcontrib>Reimann, Julia</creatorcontrib><creatorcontrib>Khadouma, Sunia</creatorcontrib><creatorcontrib>Pham, Trong K.</creatorcontrib><creatorcontrib>van der Does, Chris</creatorcontrib><creatorcontrib>Wright, Phillip C.</creatorcontrib><creatorcontrib>Essen, Lars-Oliver</creatorcontrib><creatorcontrib>Albers, Sonja-Verena</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffmann, Lena</au><au>Anders, Katrin</au><au>Bischof, Lisa F.</au><au>Ye, Xing</au><au>Reimann, Julia</au><au>Khadouma, Sunia</au><au>Pham, Trong K.</au><au>van der Does, Chris</au><au>Wright, Phillip C.</au><au>Essen, Lars-Oliver</au><au>Albers, Sonja-Verena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and interactions of the archaeal motility repression module ArnA–ArnB that modulates archaellum gene expression in Sulfolobus acidocaldarius</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-05-03</date><risdate>2019</risdate><volume>294</volume><issue>18</issue><spage>7460</spage><epage>7471</epage><pages>7460-7471</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Phosphorylation-dependent interactions play crucial regulatory roles in all domains of life. Forkhead-associated (FHA) and von Willebrand type A (vWA) domains are involved in several phosphorylation-dependent processes of multiprotein complex assemblies. Although well-studied in eukaryotes and bacteria, the structural and functional contexts of these domains are not yet understood in Archaea. Here, we report the structural base for such an interacting pair of FHA and vWA domain-containing proteins, ArnA and ArnB, in the thermoacidophilic archaeon Sulfolobus acidocaldarius, where they act synergistically and negatively modulate motility. The structure of the FHA domain of ArnA at 1.75 Å resolution revealed that it belongs to the subclass of FHA domains, which recognizes double-pSer/pThr motifs. We also solved the 1.5 Å resolution crystal structure of the ArnB paralog vWA2, disclosing a complex topology comprising the vWA domain, a β-sandwich fold, and a C-terminal helix bundle. We further show that ArnA binds to the C terminus of ArnB, which harbors all the phosphorylation sites identified to date and is important for the function of ArnB in archaellum regulation. We also observed that expression levels of the archaellum components in response to changes in nutrient conditions are independent of changes in ArnA and ArnB levels and that a strong interaction between ArnA and ArnB observed during growth on rich medium sequentially diminishes after nutrient limitation. In summary, our findings unravel the structural features in ArnA and ArnB important for their interaction and functional archaellum expression and reveal how nutrient conditions affect this interaction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30902813</pmid><doi>10.1074/jbc.RA119.007709</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2459-2226</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2019-05, Vol.294 (18), p.7460-7471 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6509490 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Archaea Archaeal Proteins - chemistry Archaeal Proteins - genetics Archaeal Proteins - metabolism cell motility Crystallography, X-Ray Culture Media Gene Expression Regulation, Archaeal Genes, Archaeal Microbiology Phosphorylation Protein Conformation protein phosphorylation signal transduction Sulfolobus acidocaldarius - genetics Sulfolobus acidocaldarius - metabolism transcription regulation |
title | Structure and interactions of the archaeal motility repression module ArnA–ArnB that modulates archaellum gene expression in Sulfolobus acidocaldarius |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20interactions%20of%20the%20archaeal%20motility%20repression%20module%20ArnA%E2%80%93ArnB%20that%20modulates%20archaellum%20gene%20expression%20in%20Sulfolobus%20acidocaldarius&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Hoffmann,%20Lena&rft.date=2019-05-03&rft.volume=294&rft.issue=18&rft.spage=7460&rft.epage=7471&rft.pages=7460-7471&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.007709&rft_dat=%3Cproquest_pubme%3E2196533055%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196533055&rft_id=info:pmid/30902813&rft_els_id=S0021925820368198&rfr_iscdi=true |