Integration of bilateral nociceptive inputs tunes spinal and cerebral responses

Together with the nociceptive system, pain protects the body from tissue damage. For instance, when the RIII-reflex is evoked by sural nerve stimulation, nociceptive inputs activate flexor muscles and inhibit extensor muscles of the affected lower limb while producing the opposite effects on the con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-05, Vol.9 (1), p.7143-7143, Article 7143
Hauptverfasser: Rustamov, Nabi, Northon, Stéphane, Tessier, Jessica, Leblond, Hugues, Piché, Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7143
container_issue 1
container_start_page 7143
container_title Scientific reports
container_volume 9
creator Rustamov, Nabi
Northon, Stéphane
Tessier, Jessica
Leblond, Hugues
Piché, Mathieu
description Together with the nociceptive system, pain protects the body from tissue damage. For instance, when the RIII-reflex is evoked by sural nerve stimulation, nociceptive inputs activate flexor muscles and inhibit extensor muscles of the affected lower limb while producing the opposite effects on the contralateral muscles. But how do the spinal cord and brain integrate concurrent sensorimotor information originating from both limbs? This is critical for evoking coordinated responses to nociceptive stimuli, but has been overlooked. Here we show that the spinal cord integrates spinal inhibitory and descending facilitatory inputs during concurrent bilateral foot stimulation, resulting in facilitation of the RIII-reflex and bilateral flexion. In these conditions, high-gamma oscillation power was also increased in the dorsolateral prefrontal, anterior cingulate and sensorimotor cortex, in accordance with the involvement of these regions in cognitive, motor and pain regulation. We propose that the brain and spinal cord can fine-tune nociceptive and pain responses when nociceptive inputs arise from both lower limbs concurrently, in order to allow adaptable behavioural responses.
doi_str_mv 10.1038/s41598-019-43567-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6509112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222645141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2ec27f6dce72b02eb652dfca4b1287c575f5ade1a12b8340ec2bc341778221e13</originalsourceid><addsrcrecordid>eNp9kUFvFSEUhYnR2Kb2D7gwk7hxM5V7gWFmY2IatU2adKNrwvDuPGnmwQhMk_fv5flqrS5kA8n57uHAYew18Avgon-fJaihbzkMrRSq0-3-GTtFLlWLAvH5k_MJO8_5jtelcJAwvGQnArgWIPpTdnsdCm2TLT6GJk7N6GdbKNm5CdF5R0vx99T4sKwlN2UNlJu8-FB1GzaNo0TjAU6Ulxgy5VfsxWTnTOcP-xn79vnT18ur9ub2y_Xlx5vWSS1Li-RQT93GkcaRI42dws3krBwBe-2UVpOyGwILOPZC8oqPTkjQukcEAnHGPhx9l3XcUfUJpeYwS_I7m_YmWm_-VoL_brbx3nSKDwBYDd49GKT4Y6VczM5nR_NsA8U1G0QBA2A3iIq-_Qe9i2uqf3CgEDupQB4S4ZFyKeacaHoMA9wcKjPHykytzPyqzOzr0Junz3gc-V1QBcQRyFUKW0p_7v6P7U9FD6Ou</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222645141</pqid></control><display><type>article</type><title>Integration of bilateral nociceptive inputs tunes spinal and cerebral responses</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Rustamov, Nabi ; Northon, Stéphane ; Tessier, Jessica ; Leblond, Hugues ; Piché, Mathieu</creator><creatorcontrib>Rustamov, Nabi ; Northon, Stéphane ; Tessier, Jessica ; Leblond, Hugues ; Piché, Mathieu</creatorcontrib><description>Together with the nociceptive system, pain protects the body from tissue damage. For instance, when the RIII-reflex is evoked by sural nerve stimulation, nociceptive inputs activate flexor muscles and inhibit extensor muscles of the affected lower limb while producing the opposite effects on the contralateral muscles. But how do the spinal cord and brain integrate concurrent sensorimotor information originating from both limbs? This is critical for evoking coordinated responses to nociceptive stimuli, but has been overlooked. Here we show that the spinal cord integrates spinal inhibitory and descending facilitatory inputs during concurrent bilateral foot stimulation, resulting in facilitation of the RIII-reflex and bilateral flexion. In these conditions, high-gamma oscillation power was also increased in the dorsolateral prefrontal, anterior cingulate and sensorimotor cortex, in accordance with the involvement of these regions in cognitive, motor and pain regulation. We propose that the brain and spinal cord can fine-tune nociceptive and pain responses when nociceptive inputs arise from both lower limbs concurrently, in order to allow adaptable behavioural responses.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-43567-y</identifier><identifier>PMID: 31073138</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/2629/1779 ; 631/378/3917 ; 631/443/376 ; Adult ; Cognitive ability ; Electric Stimulation ; Evoked Potentials ; Female ; Humanities and Social Sciences ; Humans ; Information processing ; Limbs ; Lower Extremity - physiopathology ; Male ; Middle Aged ; multidisciplinary ; Muscles ; Pain ; Pain - physiopathology ; Pain perception ; Prefrontal cortex ; Science ; Science (multidisciplinary) ; Sensorimotor Cortex - physiopathology ; Somatosensory cortex ; Spinal cord ; Spinal Cord - physiopathology ; Sural nerve ; Young Adult</subject><ispartof>Scientific reports, 2019-05, Vol.9 (1), p.7143-7143, Article 7143</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-2ec27f6dce72b02eb652dfca4b1287c575f5ade1a12b8340ec2bc341778221e13</citedby><cites>FETCH-LOGICAL-c474t-2ec27f6dce72b02eb652dfca4b1287c575f5ade1a12b8340ec2bc341778221e13</cites><orcidid>0000-0003-4171-2226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509112/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509112/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31073138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rustamov, Nabi</creatorcontrib><creatorcontrib>Northon, Stéphane</creatorcontrib><creatorcontrib>Tessier, Jessica</creatorcontrib><creatorcontrib>Leblond, Hugues</creatorcontrib><creatorcontrib>Piché, Mathieu</creatorcontrib><title>Integration of bilateral nociceptive inputs tunes spinal and cerebral responses</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Together with the nociceptive system, pain protects the body from tissue damage. For instance, when the RIII-reflex is evoked by sural nerve stimulation, nociceptive inputs activate flexor muscles and inhibit extensor muscles of the affected lower limb while producing the opposite effects on the contralateral muscles. But how do the spinal cord and brain integrate concurrent sensorimotor information originating from both limbs? This is critical for evoking coordinated responses to nociceptive stimuli, but has been overlooked. Here we show that the spinal cord integrates spinal inhibitory and descending facilitatory inputs during concurrent bilateral foot stimulation, resulting in facilitation of the RIII-reflex and bilateral flexion. In these conditions, high-gamma oscillation power was also increased in the dorsolateral prefrontal, anterior cingulate and sensorimotor cortex, in accordance with the involvement of these regions in cognitive, motor and pain regulation. We propose that the brain and spinal cord can fine-tune nociceptive and pain responses when nociceptive inputs arise from both lower limbs concurrently, in order to allow adaptable behavioural responses.</description><subject>631/378/2629/1779</subject><subject>631/378/3917</subject><subject>631/443/376</subject><subject>Adult</subject><subject>Cognitive ability</subject><subject>Electric Stimulation</subject><subject>Evoked Potentials</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Information processing</subject><subject>Limbs</subject><subject>Lower Extremity - physiopathology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Muscles</subject><subject>Pain</subject><subject>Pain - physiopathology</subject><subject>Pain perception</subject><subject>Prefrontal cortex</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensorimotor Cortex - physiopathology</subject><subject>Somatosensory cortex</subject><subject>Spinal cord</subject><subject>Spinal Cord - physiopathology</subject><subject>Sural nerve</subject><subject>Young Adult</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUFvFSEUhYnR2Kb2D7gwk7hxM5V7gWFmY2IatU2adKNrwvDuPGnmwQhMk_fv5flqrS5kA8n57uHAYew18Avgon-fJaihbzkMrRSq0-3-GTtFLlWLAvH5k_MJO8_5jtelcJAwvGQnArgWIPpTdnsdCm2TLT6GJk7N6GdbKNm5CdF5R0vx99T4sKwlN2UNlJu8-FB1GzaNo0TjAU6Ulxgy5VfsxWTnTOcP-xn79vnT18ur9ub2y_Xlx5vWSS1Li-RQT93GkcaRI42dws3krBwBe-2UVpOyGwILOPZC8oqPTkjQukcEAnHGPhx9l3XcUfUJpeYwS_I7m_YmWm_-VoL_brbx3nSKDwBYDd49GKT4Y6VczM5nR_NsA8U1G0QBA2A3iIq-_Qe9i2uqf3CgEDupQB4S4ZFyKeacaHoMA9wcKjPHykytzPyqzOzr0Junz3gc-V1QBcQRyFUKW0p_7v6P7U9FD6Ou</recordid><startdate>20190509</startdate><enddate>20190509</enddate><creator>Rustamov, Nabi</creator><creator>Northon, Stéphane</creator><creator>Tessier, Jessica</creator><creator>Leblond, Hugues</creator><creator>Piché, Mathieu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4171-2226</orcidid></search><sort><creationdate>20190509</creationdate><title>Integration of bilateral nociceptive inputs tunes spinal and cerebral responses</title><author>Rustamov, Nabi ; Northon, Stéphane ; Tessier, Jessica ; Leblond, Hugues ; Piché, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2ec27f6dce72b02eb652dfca4b1287c575f5ade1a12b8340ec2bc341778221e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/378/2629/1779</topic><topic>631/378/3917</topic><topic>631/443/376</topic><topic>Adult</topic><topic>Cognitive ability</topic><topic>Electric Stimulation</topic><topic>Evoked Potentials</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Information processing</topic><topic>Limbs</topic><topic>Lower Extremity - physiopathology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Muscles</topic><topic>Pain</topic><topic>Pain - physiopathology</topic><topic>Pain perception</topic><topic>Prefrontal cortex</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensorimotor Cortex - physiopathology</topic><topic>Somatosensory cortex</topic><topic>Spinal cord</topic><topic>Spinal Cord - physiopathology</topic><topic>Sural nerve</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rustamov, Nabi</creatorcontrib><creatorcontrib>Northon, Stéphane</creatorcontrib><creatorcontrib>Tessier, Jessica</creatorcontrib><creatorcontrib>Leblond, Hugues</creatorcontrib><creatorcontrib>Piché, Mathieu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rustamov, Nabi</au><au>Northon, Stéphane</au><au>Tessier, Jessica</au><au>Leblond, Hugues</au><au>Piché, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of bilateral nociceptive inputs tunes spinal and cerebral responses</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-05-09</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>7143</spage><epage>7143</epage><pages>7143-7143</pages><artnum>7143</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Together with the nociceptive system, pain protects the body from tissue damage. For instance, when the RIII-reflex is evoked by sural nerve stimulation, nociceptive inputs activate flexor muscles and inhibit extensor muscles of the affected lower limb while producing the opposite effects on the contralateral muscles. But how do the spinal cord and brain integrate concurrent sensorimotor information originating from both limbs? This is critical for evoking coordinated responses to nociceptive stimuli, but has been overlooked. Here we show that the spinal cord integrates spinal inhibitory and descending facilitatory inputs during concurrent bilateral foot stimulation, resulting in facilitation of the RIII-reflex and bilateral flexion. In these conditions, high-gamma oscillation power was also increased in the dorsolateral prefrontal, anterior cingulate and sensorimotor cortex, in accordance with the involvement of these regions in cognitive, motor and pain regulation. We propose that the brain and spinal cord can fine-tune nociceptive and pain responses when nociceptive inputs arise from both lower limbs concurrently, in order to allow adaptable behavioural responses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31073138</pmid><doi>10.1038/s41598-019-43567-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4171-2226</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-05, Vol.9 (1), p.7143-7143, Article 7143
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6509112
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 631/378/2629/1779
631/378/3917
631/443/376
Adult
Cognitive ability
Electric Stimulation
Evoked Potentials
Female
Humanities and Social Sciences
Humans
Information processing
Limbs
Lower Extremity - physiopathology
Male
Middle Aged
multidisciplinary
Muscles
Pain
Pain - physiopathology
Pain perception
Prefrontal cortex
Science
Science (multidisciplinary)
Sensorimotor Cortex - physiopathology
Somatosensory cortex
Spinal cord
Spinal Cord - physiopathology
Sural nerve
Young Adult
title Integration of bilateral nociceptive inputs tunes spinal and cerebral responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20bilateral%20nociceptive%20inputs%20tunes%20spinal%20and%20cerebral%20responses&rft.jtitle=Scientific%20reports&rft.au=Rustamov,%20Nabi&rft.date=2019-05-09&rft.volume=9&rft.issue=1&rft.spage=7143&rft.epage=7143&rft.pages=7143-7143&rft.artnum=7143&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-43567-y&rft_dat=%3Cproquest_pubme%3E2222645141%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222645141&rft_id=info:pmid/31073138&rfr_iscdi=true