Solvent Mediation of Peptide Conformations: Polyproline Structures in Water, Methanol, Ethanol, and 1-Propanol as Determined by Ion Mobility Spectrometry-Mass Spectrometry
Ion mobility spectrometry and circular dichroism spectroscopy are used to examine the populations of the small model peptide, polyproline-13 in water, methanol, ethanol, and 1-propanol over a range of solution temperatures (from 288 to 318 K). At low temperatures, the less-polar solvents (1-propanol...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Mass Spectrometry 2019-01, Vol.30 (1), p.77-84 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 77 |
container_title | Journal of the American Society for Mass Spectrometry |
container_volume | 30 |
creator | El-Baba, Tarick J. Fuller, Daniel R. Hales, David A. Russell, David H. Clemmer, David E. |
description | Ion mobility spectrometry and circular dichroism spectroscopy are used to examine the populations of the small model peptide, polyproline-13 in water, methanol, ethanol, and 1-propanol over a range of solution temperatures (from 288 to 318 K). At low temperatures, the less-polar solvents (1-propanol and ethanol) favor the all-
cis
polyproline I helix (PPI); as the temperature is increased, the
trans
-configured polyproline II helix (PPII) is formed. In polar solvents (methanol and water), PPII is favored at all temperatures. From the experimental data, we determine the relative stabilities of the eight structures in methanol, ethanol, and 1-propanol, as well as four in water, all with respect to PPII. Although these conformers show relatively small differences in free energies, substantial variability is observed in the enthalpies and entropies across the structures and solvents. This requires that enthalpies and entropies be highly correlated: in 1-propanol,
cis
-configured PPI conformations are energetically favorable but entropically disfavored. In more polar solvents, PPI is enthalpically less favorable and entropy favors
trans
-configured forms. While either Δ
H
0
or Δ
S
0
can favor different structures, no conformation in any solvent is simultaneously energetically and entropically stabilized. These data present a rare opportunity to examine the origin of conformational stability.
Graphical Abstract
ᅟ |
doi_str_mv | 10.1007/s13361-018-2034-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6503664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081205610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-520ee7d5411e8a5365986f70fe5242cc5614f88b7bbe6e10ac144edbe14ba57f3</originalsourceid><addsrcrecordid>eNp1ksFu1DAQhiNERUvhAbggS1w4NGUmceIsByS0FKjUFSstiKPlJJPWVWIH26mUZ-Ilcdi2UCROtmc-_zNj_0nyAuEUAcQbj3leYgpYpRnkPBWPkiOsxCpFzPLHcQ-cp5BDcZg89f4aAAWsxJPkMAcoVyXHo-TnzvY3ZALbUKtV0NYw27EtjUG3xNbWdNYNv-P-Ldvafh6d7bUhtgtuasLkyDNt2HcVyJ1EkXCljO1P2NndRpmWYbp1dlzOTHn2gSI7RI2W1TM7jxU3tta9DjPbjdQEZwcKbk43yvsHkWfJQad6T89v1-Pk28ezr-vP6cWXT-fr9xdpwwWEtMiASLQFR6RKFXlZrKqyE9BRkfGsaYoSeVdVtahrKglBNcg5tTUhr1Uhuvw4ebfXHad6oLaJz-NUL0enB-VmaZWWDzNGX8lLeyPLAvKy5FHg9a2Asz8m8kEO2jfU98qQnbzMoMpghTkXEX31D3ptJ2fieAuFGcRuIVK4pxpnvXfU3TeDIBcryL0VZLSCXKwgF-WXf09xf-Pu7yOQ7QEfU-aS3J_S_1f9BRuxwno</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081205610</pqid></control><display><type>article</type><title>Solvent Mediation of Peptide Conformations: Polyproline Structures in Water, Methanol, Ethanol, and 1-Propanol as Determined by Ion Mobility Spectrometry-Mass Spectrometry</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>El-Baba, Tarick J. ; Fuller, Daniel R. ; Hales, David A. ; Russell, David H. ; Clemmer, David E.</creator><creatorcontrib>El-Baba, Tarick J. ; Fuller, Daniel R. ; Hales, David A. ; Russell, David H. ; Clemmer, David E.</creatorcontrib><description>Ion mobility spectrometry and circular dichroism spectroscopy are used to examine the populations of the small model peptide, polyproline-13 in water, methanol, ethanol, and 1-propanol over a range of solution temperatures (from 288 to 318 K). At low temperatures, the less-polar solvents (1-propanol and ethanol) favor the all-
cis
polyproline I helix (PPI); as the temperature is increased, the
trans
-configured polyproline II helix (PPII) is formed. In polar solvents (methanol and water), PPII is favored at all temperatures. From the experimental data, we determine the relative stabilities of the eight structures in methanol, ethanol, and 1-propanol, as well as four in water, all with respect to PPII. Although these conformers show relatively small differences in free energies, substantial variability is observed in the enthalpies and entropies across the structures and solvents. This requires that enthalpies and entropies be highly correlated: in 1-propanol,
cis
-configured PPI conformations are energetically favorable but entropically disfavored. In more polar solvents, PPI is enthalpically less favorable and entropy favors
trans
-configured forms. While either Δ
H
0
or Δ
S
0
can favor different structures, no conformation in any solvent is simultaneously energetically and entropically stabilized. These data present a rare opportunity to examine the origin of conformational stability.
Graphical Abstract
ᅟ</description><identifier>ISSN: 1044-0305</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1007/s13361-018-2034-7</identifier><identifier>PMID: 30069641</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>1-Propanol - chemistry ; Analytical Chemistry ; Bioinformatics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Circular Dichroism ; Dichroism ; Enthalpy ; Entropy ; Ethanol ; Ethanol - chemistry ; Focus: Honoring Carol V. Robinson's Election to the National Academy of Sciences: Research Article ; Ion Mobility Spectrometry - methods ; Ionic mobility ; Ions ; Mass spectrometry ; Methanol ; Methanol - chemistry ; Organic Chemistry ; Peptides - chemistry ; Protein Conformation ; Proteomics ; Scientific imaging ; Solvents ; Solvents - chemistry ; Spectroscopy ; Temperature ; Thermodynamics ; Water - chemistry</subject><ispartof>Journal of the American Society for Mass Spectrometry, 2019-01, Vol.30 (1), p.77-84</ispartof><rights>American Society for Mass Spectrometry 2018</rights><rights>Journal of The American Society for Mass Spectrometry is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-520ee7d5411e8a5365986f70fe5242cc5614f88b7bbe6e10ac144edbe14ba57f3</citedby><cites>FETCH-LOGICAL-c470t-520ee7d5411e8a5365986f70fe5242cc5614f88b7bbe6e10ac144edbe14ba57f3</cites><orcidid>0000-0003-4039-1360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13361-018-2034-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13361-018-2034-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30069641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>El-Baba, Tarick J.</creatorcontrib><creatorcontrib>Fuller, Daniel R.</creatorcontrib><creatorcontrib>Hales, David A.</creatorcontrib><creatorcontrib>Russell, David H.</creatorcontrib><creatorcontrib>Clemmer, David E.</creatorcontrib><title>Solvent Mediation of Peptide Conformations: Polyproline Structures in Water, Methanol, Ethanol, and 1-Propanol as Determined by Ion Mobility Spectrometry-Mass Spectrometry</title><title>Journal of the American Society for Mass Spectrometry</title><addtitle>J. Am. Soc. Mass Spectrom</addtitle><addtitle>J Am Soc Mass Spectrom</addtitle><description>Ion mobility spectrometry and circular dichroism spectroscopy are used to examine the populations of the small model peptide, polyproline-13 in water, methanol, ethanol, and 1-propanol over a range of solution temperatures (from 288 to 318 K). At low temperatures, the less-polar solvents (1-propanol and ethanol) favor the all-
cis
polyproline I helix (PPI); as the temperature is increased, the
trans
-configured polyproline II helix (PPII) is formed. In polar solvents (methanol and water), PPII is favored at all temperatures. From the experimental data, we determine the relative stabilities of the eight structures in methanol, ethanol, and 1-propanol, as well as four in water, all with respect to PPII. Although these conformers show relatively small differences in free energies, substantial variability is observed in the enthalpies and entropies across the structures and solvents. This requires that enthalpies and entropies be highly correlated: in 1-propanol,
cis
-configured PPI conformations are energetically favorable but entropically disfavored. In more polar solvents, PPI is enthalpically less favorable and entropy favors
trans
-configured forms. While either Δ
H
0
or Δ
S
0
can favor different structures, no conformation in any solvent is simultaneously energetically and entropically stabilized. These data present a rare opportunity to examine the origin of conformational stability.
Graphical Abstract
ᅟ</description><subject>1-Propanol - chemistry</subject><subject>Analytical Chemistry</subject><subject>Bioinformatics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Circular Dichroism</subject><subject>Dichroism</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Ethanol</subject><subject>Ethanol - chemistry</subject><subject>Focus: Honoring Carol V. Robinson's Election to the National Academy of Sciences: Research Article</subject><subject>Ion Mobility Spectrometry - methods</subject><subject>Ionic mobility</subject><subject>Ions</subject><subject>Mass spectrometry</subject><subject>Methanol</subject><subject>Methanol - chemistry</subject><subject>Organic Chemistry</subject><subject>Peptides - chemistry</subject><subject>Protein Conformation</subject><subject>Proteomics</subject><subject>Scientific imaging</subject><subject>Solvents</subject><subject>Solvents - chemistry</subject><subject>Spectroscopy</subject><subject>Temperature</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>1044-0305</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1ksFu1DAQhiNERUvhAbggS1w4NGUmceIsByS0FKjUFSstiKPlJJPWVWIH26mUZ-Ilcdi2UCROtmc-_zNj_0nyAuEUAcQbj3leYgpYpRnkPBWPkiOsxCpFzPLHcQ-cp5BDcZg89f4aAAWsxJPkMAcoVyXHo-TnzvY3ZALbUKtV0NYw27EtjUG3xNbWdNYNv-P-Ldvafh6d7bUhtgtuasLkyDNt2HcVyJ1EkXCljO1P2NndRpmWYbp1dlzOTHn2gSI7RI2W1TM7jxU3tta9DjPbjdQEZwcKbk43yvsHkWfJQad6T89v1-Pk28ezr-vP6cWXT-fr9xdpwwWEtMiASLQFR6RKFXlZrKqyE9BRkfGsaYoSeVdVtahrKglBNcg5tTUhr1Uhuvw4ebfXHad6oLaJz-NUL0enB-VmaZWWDzNGX8lLeyPLAvKy5FHg9a2Asz8m8kEO2jfU98qQnbzMoMpghTkXEX31D3ptJ2fieAuFGcRuIVK4pxpnvXfU3TeDIBcryL0VZLSCXKwgF-WXf09xf-Pu7yOQ7QEfU-aS3J_S_1f9BRuxwno</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>El-Baba, Tarick J.</creator><creator>Fuller, Daniel R.</creator><creator>Hales, David A.</creator><creator>Russell, David H.</creator><creator>Clemmer, David E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4039-1360</orcidid></search><sort><creationdate>20190101</creationdate><title>Solvent Mediation of Peptide Conformations: Polyproline Structures in Water, Methanol, Ethanol, and 1-Propanol as Determined by Ion Mobility Spectrometry-Mass Spectrometry</title><author>El-Baba, Tarick J. ; Fuller, Daniel R. ; Hales, David A. ; Russell, David H. ; Clemmer, David E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-520ee7d5411e8a5365986f70fe5242cc5614f88b7bbe6e10ac144edbe14ba57f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1-Propanol - chemistry</topic><topic>Analytical Chemistry</topic><topic>Bioinformatics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Circular Dichroism</topic><topic>Dichroism</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Ethanol</topic><topic>Ethanol - chemistry</topic><topic>Focus: Honoring Carol V. Robinson's Election to the National Academy of Sciences: Research Article</topic><topic>Ion Mobility Spectrometry - methods</topic><topic>Ionic mobility</topic><topic>Ions</topic><topic>Mass spectrometry</topic><topic>Methanol</topic><topic>Methanol - chemistry</topic><topic>Organic Chemistry</topic><topic>Peptides - chemistry</topic><topic>Protein Conformation</topic><topic>Proteomics</topic><topic>Scientific imaging</topic><topic>Solvents</topic><topic>Solvents - chemistry</topic><topic>Spectroscopy</topic><topic>Temperature</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Baba, Tarick J.</creatorcontrib><creatorcontrib>Fuller, Daniel R.</creatorcontrib><creatorcontrib>Hales, David A.</creatorcontrib><creatorcontrib>Russell, David H.</creatorcontrib><creatorcontrib>Clemmer, David E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Baba, Tarick J.</au><au>Fuller, Daniel R.</au><au>Hales, David A.</au><au>Russell, David H.</au><au>Clemmer, David E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent Mediation of Peptide Conformations: Polyproline Structures in Water, Methanol, Ethanol, and 1-Propanol as Determined by Ion Mobility Spectrometry-Mass Spectrometry</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><stitle>J. Am. Soc. Mass Spectrom</stitle><addtitle>J Am Soc Mass Spectrom</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>30</volume><issue>1</issue><spage>77</spage><epage>84</epage><pages>77-84</pages><issn>1044-0305</issn><eissn>1879-1123</eissn><abstract>Ion mobility spectrometry and circular dichroism spectroscopy are used to examine the populations of the small model peptide, polyproline-13 in water, methanol, ethanol, and 1-propanol over a range of solution temperatures (from 288 to 318 K). At low temperatures, the less-polar solvents (1-propanol and ethanol) favor the all-
cis
polyproline I helix (PPI); as the temperature is increased, the
trans
-configured polyproline II helix (PPII) is formed. In polar solvents (methanol and water), PPII is favored at all temperatures. From the experimental data, we determine the relative stabilities of the eight structures in methanol, ethanol, and 1-propanol, as well as four in water, all with respect to PPII. Although these conformers show relatively small differences in free energies, substantial variability is observed in the enthalpies and entropies across the structures and solvents. This requires that enthalpies and entropies be highly correlated: in 1-propanol,
cis
-configured PPI conformations are energetically favorable but entropically disfavored. In more polar solvents, PPI is enthalpically less favorable and entropy favors
trans
-configured forms. While either Δ
H
0
or Δ
S
0
can favor different structures, no conformation in any solvent is simultaneously energetically and entropically stabilized. These data present a rare opportunity to examine the origin of conformational stability.
Graphical Abstract
ᅟ</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30069641</pmid><doi>10.1007/s13361-018-2034-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4039-1360</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-0305 |
ispartof | Journal of the American Society for Mass Spectrometry, 2019-01, Vol.30 (1), p.77-84 |
issn | 1044-0305 1879-1123 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6503664 |
source | MEDLINE; SpringerLink Journals |
subjects | 1-Propanol - chemistry Analytical Chemistry Bioinformatics Biotechnology Chemistry Chemistry and Materials Science Circular Dichroism Dichroism Enthalpy Entropy Ethanol Ethanol - chemistry Focus: Honoring Carol V. Robinson's Election to the National Academy of Sciences: Research Article Ion Mobility Spectrometry - methods Ionic mobility Ions Mass spectrometry Methanol Methanol - chemistry Organic Chemistry Peptides - chemistry Protein Conformation Proteomics Scientific imaging Solvents Solvents - chemistry Spectroscopy Temperature Thermodynamics Water - chemistry |
title | Solvent Mediation of Peptide Conformations: Polyproline Structures in Water, Methanol, Ethanol, and 1-Propanol as Determined by Ion Mobility Spectrometry-Mass Spectrometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent%20Mediation%20of%20Peptide%20Conformations:%20Polyproline%20Structures%20in%20Water,%20Methanol,%20Ethanol,%20and%201-Propanol%20as%20Determined%20by%20Ion%20Mobility%20Spectrometry-Mass%20Spectrometry&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=El-Baba,%20Tarick%20J.&rft.date=2019-01-01&rft.volume=30&rft.issue=1&rft.spage=77&rft.epage=84&rft.pages=77-84&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1007/s13361-018-2034-7&rft_dat=%3Cproquest_pubme%3E2081205610%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081205610&rft_id=info:pmid/30069641&rfr_iscdi=true |