An Insect Counteradaptation against Host Plant Defenses Evolved through Concerted Neofunctionalization

Antagonistic chemical interactions between herbivorous insects and their host plants are often thought to coevolve in a stepwise process, with an evolutionary innovation on one side being countered by a corresponding advance on the other. Glucosinolate sulfatase (GSS) enzyme activity is essential fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 2019-05, Vol.36 (5), p.930-941
Hauptverfasser: Heidel-Fischer, Hanna M, Kirsch, Roy, Reichelt, Michael, Ahn, Seung-Joon, Wielsch, Natalie, Baxter, Simon W, Heckel, David G, Vogel, Heiko, Kroymann, Juergen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 941
container_issue 5
container_start_page 930
container_title Molecular biology and evolution
container_volume 36
creator Heidel-Fischer, Hanna M
Kirsch, Roy
Reichelt, Michael
Ahn, Seung-Joon
Wielsch, Natalie
Baxter, Simon W
Heckel, David G
Vogel, Heiko
Kroymann, Juergen
description Antagonistic chemical interactions between herbivorous insects and their host plants are often thought to coevolve in a stepwise process, with an evolutionary innovation on one side being countered by a corresponding advance on the other. Glucosinolate sulfatase (GSS) enzyme activity is essential for the Diamondback moth, Plutella xylostella, to overcome a highly diversified secondary metabolite-based host defense system in the Brassicales. GSS genes are located in an ancient cluster of arylsulfataselike genes, but the exact roles of gene copies and their evolutionary trajectories are unknown. Here, we combine a functional investigation of duplicated insect arylsulfatases with an analysis of associated nucleotide substitution patterns. We show that the Diamondback moth genome encodes three GSSs with distinct substrate spectra and distinct expression patterns in response to glucosinolates. Contrary to our expectations, early functional diversification of gene copies was not indicative of a coevolutionary arms race between host and herbivore. Instead, both copies of a duplicated arylsulfatase gene evolved concertedly in the context of an insect host shift to acquire novel detoxifying functions under positive selection, a pattern of duplicate gene retention that we call "concerted neofunctionalization."
doi_str_mv 10.1093/molbev/msz019
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179488043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-cf45cc78f6690220a63b8900c8a21124df48195e2dad0b60d63e4187ae05b3b33</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhyBXlSA-h49hxnAvSaindSivKAc6W40x2gxJ7sZ1I9NfX27QVcLGt8TOPP15C3lP4RKFml6MbGpwvx3AHtH5BVrRkVU4rWr8kK6jSmgOTZ-RNCL8AKOdCvCZnDCpacpAr0q1tdmMDmpht3GQjet3qY9SxdzbTe93bELOtS8P3QduYfcEOEx6yq9kNM7ZZPHg37Q-p2xr0MVW-oesma04GPfR3D6q35FWnh4DvHudz8vPr1Y_NNt_dXt9s1rvccFnF3HS8NKaSnRA1FAVowRpZAxipC0oL3nZc0rrEotUtNAJawZBTWWmEsmENY-fk8-I9Ts2IrUEbvR7U0fej9n-U0736d8f2B7V3sxIlJA9PgotFcPivbbveqVMNCgq8BDHTxH58PMy73xOGqMY-GBzSR6GbgipoVXMpgZ_ulS-o8S4Ej92zm4I65aiWHNWSY-I__P2OZ_opOHYPrGidRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179488043</pqid></control><display><type>article</type><title>An Insect Counteradaptation against Host Plant Defenses Evolved through Concerted Neofunctionalization</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Heidel-Fischer, Hanna M ; Kirsch, Roy ; Reichelt, Michael ; Ahn, Seung-Joon ; Wielsch, Natalie ; Baxter, Simon W ; Heckel, David G ; Vogel, Heiko ; Kroymann, Juergen</creator><contributor>Purugganan, Michael</contributor><creatorcontrib>Heidel-Fischer, Hanna M ; Kirsch, Roy ; Reichelt, Michael ; Ahn, Seung-Joon ; Wielsch, Natalie ; Baxter, Simon W ; Heckel, David G ; Vogel, Heiko ; Kroymann, Juergen ; Purugganan, Michael</creatorcontrib><description>Antagonistic chemical interactions between herbivorous insects and their host plants are often thought to coevolve in a stepwise process, with an evolutionary innovation on one side being countered by a corresponding advance on the other. Glucosinolate sulfatase (GSS) enzyme activity is essential for the Diamondback moth, Plutella xylostella, to overcome a highly diversified secondary metabolite-based host defense system in the Brassicales. GSS genes are located in an ancient cluster of arylsulfataselike genes, but the exact roles of gene copies and their evolutionary trajectories are unknown. Here, we combine a functional investigation of duplicated insect arylsulfatases with an analysis of associated nucleotide substitution patterns. We show that the Diamondback moth genome encodes three GSSs with distinct substrate spectra and distinct expression patterns in response to glucosinolates. Contrary to our expectations, early functional diversification of gene copies was not indicative of a coevolutionary arms race between host and herbivore. Instead, both copies of a duplicated arylsulfatase gene evolved concertedly in the context of an insect host shift to acquire novel detoxifying functions under positive selection, a pattern of duplicate gene retention that we call "concerted neofunctionalization."</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msz019</identifier><identifier>PMID: 30715408</identifier><language>eng</language><publisher>United States: Oxford University Press (OUP)</publisher><subject>Adaptation, Biological - genetics ; Animals ; Biological Coevolution ; Discoveries ; Female ; Gene Duplication ; Genome, Insect ; Glucosinolates - metabolism ; Herbivory ; Insect Proteins - genetics ; Insect Proteins - metabolism ; Life Sciences ; Moths - genetics ; Sulfatases - genetics ; Sulfatases - metabolism</subject><ispartof>Molecular biology and evolution, 2019-05, Vol.36 (5), p.930-941</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-cf45cc78f6690220a63b8900c8a21124df48195e2dad0b60d63e4187ae05b3b33</citedby><cites>FETCH-LOGICAL-c487t-cf45cc78f6690220a63b8900c8a21124df48195e2dad0b60d63e4187ae05b3b33</cites><orcidid>0000-0001-5773-6578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501874/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501874/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30715408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02104506$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Purugganan, Michael</contributor><creatorcontrib>Heidel-Fischer, Hanna M</creatorcontrib><creatorcontrib>Kirsch, Roy</creatorcontrib><creatorcontrib>Reichelt, Michael</creatorcontrib><creatorcontrib>Ahn, Seung-Joon</creatorcontrib><creatorcontrib>Wielsch, Natalie</creatorcontrib><creatorcontrib>Baxter, Simon W</creatorcontrib><creatorcontrib>Heckel, David G</creatorcontrib><creatorcontrib>Vogel, Heiko</creatorcontrib><creatorcontrib>Kroymann, Juergen</creatorcontrib><title>An Insect Counteradaptation against Host Plant Defenses Evolved through Concerted Neofunctionalization</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Antagonistic chemical interactions between herbivorous insects and their host plants are often thought to coevolve in a stepwise process, with an evolutionary innovation on one side being countered by a corresponding advance on the other. Glucosinolate sulfatase (GSS) enzyme activity is essential for the Diamondback moth, Plutella xylostella, to overcome a highly diversified secondary metabolite-based host defense system in the Brassicales. GSS genes are located in an ancient cluster of arylsulfataselike genes, but the exact roles of gene copies and their evolutionary trajectories are unknown. Here, we combine a functional investigation of duplicated insect arylsulfatases with an analysis of associated nucleotide substitution patterns. We show that the Diamondback moth genome encodes three GSSs with distinct substrate spectra and distinct expression patterns in response to glucosinolates. Contrary to our expectations, early functional diversification of gene copies was not indicative of a coevolutionary arms race between host and herbivore. Instead, both copies of a duplicated arylsulfatase gene evolved concertedly in the context of an insect host shift to acquire novel detoxifying functions under positive selection, a pattern of duplicate gene retention that we call "concerted neofunctionalization."</description><subject>Adaptation, Biological - genetics</subject><subject>Animals</subject><subject>Biological Coevolution</subject><subject>Discoveries</subject><subject>Female</subject><subject>Gene Duplication</subject><subject>Genome, Insect</subject><subject>Glucosinolates - metabolism</subject><subject>Herbivory</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Moths - genetics</subject><subject>Sulfatases - genetics</subject><subject>Sulfatases - metabolism</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhyBXlSA-h49hxnAvSaindSivKAc6W40x2gxJ7sZ1I9NfX27QVcLGt8TOPP15C3lP4RKFml6MbGpwvx3AHtH5BVrRkVU4rWr8kK6jSmgOTZ-RNCL8AKOdCvCZnDCpacpAr0q1tdmMDmpht3GQjet3qY9SxdzbTe93bELOtS8P3QduYfcEOEx6yq9kNM7ZZPHg37Q-p2xr0MVW-oesma04GPfR3D6q35FWnh4DvHudz8vPr1Y_NNt_dXt9s1rvccFnF3HS8NKaSnRA1FAVowRpZAxipC0oL3nZc0rrEotUtNAJawZBTWWmEsmENY-fk8-I9Ts2IrUEbvR7U0fej9n-U0736d8f2B7V3sxIlJA9PgotFcPivbbveqVMNCgq8BDHTxH58PMy73xOGqMY-GBzSR6GbgipoVXMpgZ_ulS-o8S4Ej92zm4I65aiWHNWSY-I__P2OZ_opOHYPrGidRw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Heidel-Fischer, Hanna M</creator><creator>Kirsch, Roy</creator><creator>Reichelt, Michael</creator><creator>Ahn, Seung-Joon</creator><creator>Wielsch, Natalie</creator><creator>Baxter, Simon W</creator><creator>Heckel, David G</creator><creator>Vogel, Heiko</creator><creator>Kroymann, Juergen</creator><general>Oxford University Press (OUP)</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5773-6578</orcidid></search><sort><creationdate>20190501</creationdate><title>An Insect Counteradaptation against Host Plant Defenses Evolved through Concerted Neofunctionalization</title><author>Heidel-Fischer, Hanna M ; Kirsch, Roy ; Reichelt, Michael ; Ahn, Seung-Joon ; Wielsch, Natalie ; Baxter, Simon W ; Heckel, David G ; Vogel, Heiko ; Kroymann, Juergen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-cf45cc78f6690220a63b8900c8a21124df48195e2dad0b60d63e4187ae05b3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation, Biological - genetics</topic><topic>Animals</topic><topic>Biological Coevolution</topic><topic>Discoveries</topic><topic>Female</topic><topic>Gene Duplication</topic><topic>Genome, Insect</topic><topic>Glucosinolates - metabolism</topic><topic>Herbivory</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Moths - genetics</topic><topic>Sulfatases - genetics</topic><topic>Sulfatases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heidel-Fischer, Hanna M</creatorcontrib><creatorcontrib>Kirsch, Roy</creatorcontrib><creatorcontrib>Reichelt, Michael</creatorcontrib><creatorcontrib>Ahn, Seung-Joon</creatorcontrib><creatorcontrib>Wielsch, Natalie</creatorcontrib><creatorcontrib>Baxter, Simon W</creatorcontrib><creatorcontrib>Heckel, David G</creatorcontrib><creatorcontrib>Vogel, Heiko</creatorcontrib><creatorcontrib>Kroymann, Juergen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heidel-Fischer, Hanna M</au><au>Kirsch, Roy</au><au>Reichelt, Michael</au><au>Ahn, Seung-Joon</au><au>Wielsch, Natalie</au><au>Baxter, Simon W</au><au>Heckel, David G</au><au>Vogel, Heiko</au><au>Kroymann, Juergen</au><au>Purugganan, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Insect Counteradaptation against Host Plant Defenses Evolved through Concerted Neofunctionalization</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>36</volume><issue>5</issue><spage>930</spage><epage>941</epage><pages>930-941</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Antagonistic chemical interactions between herbivorous insects and their host plants are often thought to coevolve in a stepwise process, with an evolutionary innovation on one side being countered by a corresponding advance on the other. Glucosinolate sulfatase (GSS) enzyme activity is essential for the Diamondback moth, Plutella xylostella, to overcome a highly diversified secondary metabolite-based host defense system in the Brassicales. GSS genes are located in an ancient cluster of arylsulfataselike genes, but the exact roles of gene copies and their evolutionary trajectories are unknown. Here, we combine a functional investigation of duplicated insect arylsulfatases with an analysis of associated nucleotide substitution patterns. We show that the Diamondback moth genome encodes three GSSs with distinct substrate spectra and distinct expression patterns in response to glucosinolates. Contrary to our expectations, early functional diversification of gene copies was not indicative of a coevolutionary arms race between host and herbivore. Instead, both copies of a duplicated arylsulfatase gene evolved concertedly in the context of an insect host shift to acquire novel detoxifying functions under positive selection, a pattern of duplicate gene retention that we call "concerted neofunctionalization."</abstract><cop>United States</cop><pub>Oxford University Press (OUP)</pub><pmid>30715408</pmid><doi>10.1093/molbev/msz019</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5773-6578</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 2019-05, Vol.36 (5), p.930-941
issn 0737-4038
1537-1719
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501874
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adaptation, Biological - genetics
Animals
Biological Coevolution
Discoveries
Female
Gene Duplication
Genome, Insect
Glucosinolates - metabolism
Herbivory
Insect Proteins - genetics
Insect Proteins - metabolism
Life Sciences
Moths - genetics
Sulfatases - genetics
Sulfatases - metabolism
title An Insect Counteradaptation against Host Plant Defenses Evolved through Concerted Neofunctionalization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Insect%20Counteradaptation%20against%20Host%20Plant%20Defenses%20Evolved%20through%20Concerted%20Neofunctionalization&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Heidel-Fischer,%20Hanna%20M&rft.date=2019-05-01&rft.volume=36&rft.issue=5&rft.spage=930&rft.epage=941&rft.pages=930-941&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msz019&rft_dat=%3Cproquest_pubme%3E2179488043%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179488043&rft_id=info:pmid/30715408&rfr_iscdi=true