An Insect Counteradaptation against Host Plant Defenses Evolved through Concerted Neofunctionalization
Antagonistic chemical interactions between herbivorous insects and their host plants are often thought to coevolve in a stepwise process, with an evolutionary innovation on one side being countered by a corresponding advance on the other. Glucosinolate sulfatase (GSS) enzyme activity is essential fo...
Gespeichert in:
Veröffentlicht in: | Molecular biology and evolution 2019-05, Vol.36 (5), p.930-941 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 941 |
---|---|
container_issue | 5 |
container_start_page | 930 |
container_title | Molecular biology and evolution |
container_volume | 36 |
creator | Heidel-Fischer, Hanna M Kirsch, Roy Reichelt, Michael Ahn, Seung-Joon Wielsch, Natalie Baxter, Simon W Heckel, David G Vogel, Heiko Kroymann, Juergen |
description | Antagonistic chemical interactions between herbivorous insects and their host plants are often thought to coevolve in a stepwise process, with an evolutionary innovation on one side being countered by a corresponding advance on the other. Glucosinolate sulfatase (GSS) enzyme activity is essential for the Diamondback moth, Plutella xylostella, to overcome a highly diversified secondary metabolite-based host defense system in the Brassicales. GSS genes are located in an ancient cluster of arylsulfataselike genes, but the exact roles of gene copies and their evolutionary trajectories are unknown. Here, we combine a functional investigation of duplicated insect arylsulfatases with an analysis of associated nucleotide substitution patterns. We show that the Diamondback moth genome encodes three GSSs with distinct substrate spectra and distinct expression patterns in response to glucosinolates. Contrary to our expectations, early functional diversification of gene copies was not indicative of a coevolutionary arms race between host and herbivore. Instead, both copies of a duplicated arylsulfatase gene evolved concertedly in the context of an insect host shift to acquire novel detoxifying functions under positive selection, a pattern of duplicate gene retention that we call "concerted neofunctionalization." |
doi_str_mv | 10.1093/molbev/msz019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179488043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-cf45cc78f6690220a63b8900c8a21124df48195e2dad0b60d63e4187ae05b3b33</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhyBXlSA-h49hxnAvSaindSivKAc6W40x2gxJ7sZ1I9NfX27QVcLGt8TOPP15C3lP4RKFml6MbGpwvx3AHtH5BVrRkVU4rWr8kK6jSmgOTZ-RNCL8AKOdCvCZnDCpacpAr0q1tdmMDmpht3GQjet3qY9SxdzbTe93bELOtS8P3QduYfcEOEx6yq9kNM7ZZPHg37Q-p2xr0MVW-oesma04GPfR3D6q35FWnh4DvHudz8vPr1Y_NNt_dXt9s1rvccFnF3HS8NKaSnRA1FAVowRpZAxipC0oL3nZc0rrEotUtNAJawZBTWWmEsmENY-fk8-I9Ts2IrUEbvR7U0fej9n-U0736d8f2B7V3sxIlJA9PgotFcPivbbveqVMNCgq8BDHTxH58PMy73xOGqMY-GBzSR6GbgipoVXMpgZ_ulS-o8S4Ej92zm4I65aiWHNWSY-I__P2OZ_opOHYPrGidRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179488043</pqid></control><display><type>article</type><title>An Insect Counteradaptation against Host Plant Defenses Evolved through Concerted Neofunctionalization</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Heidel-Fischer, Hanna M ; Kirsch, Roy ; Reichelt, Michael ; Ahn, Seung-Joon ; Wielsch, Natalie ; Baxter, Simon W ; Heckel, David G ; Vogel, Heiko ; Kroymann, Juergen</creator><contributor>Purugganan, Michael</contributor><creatorcontrib>Heidel-Fischer, Hanna M ; Kirsch, Roy ; Reichelt, Michael ; Ahn, Seung-Joon ; Wielsch, Natalie ; Baxter, Simon W ; Heckel, David G ; Vogel, Heiko ; Kroymann, Juergen ; Purugganan, Michael</creatorcontrib><description>Antagonistic chemical interactions between herbivorous insects and their host plants are often thought to coevolve in a stepwise process, with an evolutionary innovation on one side being countered by a corresponding advance on the other. Glucosinolate sulfatase (GSS) enzyme activity is essential for the Diamondback moth, Plutella xylostella, to overcome a highly diversified secondary metabolite-based host defense system in the Brassicales. GSS genes are located in an ancient cluster of arylsulfataselike genes, but the exact roles of gene copies and their evolutionary trajectories are unknown. Here, we combine a functional investigation of duplicated insect arylsulfatases with an analysis of associated nucleotide substitution patterns. We show that the Diamondback moth genome encodes three GSSs with distinct substrate spectra and distinct expression patterns in response to glucosinolates. Contrary to our expectations, early functional diversification of gene copies was not indicative of a coevolutionary arms race between host and herbivore. Instead, both copies of a duplicated arylsulfatase gene evolved concertedly in the context of an insect host shift to acquire novel detoxifying functions under positive selection, a pattern of duplicate gene retention that we call "concerted neofunctionalization."</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msz019</identifier><identifier>PMID: 30715408</identifier><language>eng</language><publisher>United States: Oxford University Press (OUP)</publisher><subject>Adaptation, Biological - genetics ; Animals ; Biological Coevolution ; Discoveries ; Female ; Gene Duplication ; Genome, Insect ; Glucosinolates - metabolism ; Herbivory ; Insect Proteins - genetics ; Insect Proteins - metabolism ; Life Sciences ; Moths - genetics ; Sulfatases - genetics ; Sulfatases - metabolism</subject><ispartof>Molecular biology and evolution, 2019-05, Vol.36 (5), p.930-941</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-cf45cc78f6690220a63b8900c8a21124df48195e2dad0b60d63e4187ae05b3b33</citedby><cites>FETCH-LOGICAL-c487t-cf45cc78f6690220a63b8900c8a21124df48195e2dad0b60d63e4187ae05b3b33</cites><orcidid>0000-0001-5773-6578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501874/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501874/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30715408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02104506$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Purugganan, Michael</contributor><creatorcontrib>Heidel-Fischer, Hanna M</creatorcontrib><creatorcontrib>Kirsch, Roy</creatorcontrib><creatorcontrib>Reichelt, Michael</creatorcontrib><creatorcontrib>Ahn, Seung-Joon</creatorcontrib><creatorcontrib>Wielsch, Natalie</creatorcontrib><creatorcontrib>Baxter, Simon W</creatorcontrib><creatorcontrib>Heckel, David G</creatorcontrib><creatorcontrib>Vogel, Heiko</creatorcontrib><creatorcontrib>Kroymann, Juergen</creatorcontrib><title>An Insect Counteradaptation against Host Plant Defenses Evolved through Concerted Neofunctionalization</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Antagonistic chemical interactions between herbivorous insects and their host plants are often thought to coevolve in a stepwise process, with an evolutionary innovation on one side being countered by a corresponding advance on the other. Glucosinolate sulfatase (GSS) enzyme activity is essential for the Diamondback moth, Plutella xylostella, to overcome a highly diversified secondary metabolite-based host defense system in the Brassicales. GSS genes are located in an ancient cluster of arylsulfataselike genes, but the exact roles of gene copies and their evolutionary trajectories are unknown. Here, we combine a functional investigation of duplicated insect arylsulfatases with an analysis of associated nucleotide substitution patterns. We show that the Diamondback moth genome encodes three GSSs with distinct substrate spectra and distinct expression patterns in response to glucosinolates. Contrary to our expectations, early functional diversification of gene copies was not indicative of a coevolutionary arms race between host and herbivore. Instead, both copies of a duplicated arylsulfatase gene evolved concertedly in the context of an insect host shift to acquire novel detoxifying functions under positive selection, a pattern of duplicate gene retention that we call "concerted neofunctionalization."</description><subject>Adaptation, Biological - genetics</subject><subject>Animals</subject><subject>Biological Coevolution</subject><subject>Discoveries</subject><subject>Female</subject><subject>Gene Duplication</subject><subject>Genome, Insect</subject><subject>Glucosinolates - metabolism</subject><subject>Herbivory</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Moths - genetics</subject><subject>Sulfatases - genetics</subject><subject>Sulfatases - metabolism</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhyBXlSA-h49hxnAvSaindSivKAc6W40x2gxJ7sZ1I9NfX27QVcLGt8TOPP15C3lP4RKFml6MbGpwvx3AHtH5BVrRkVU4rWr8kK6jSmgOTZ-RNCL8AKOdCvCZnDCpacpAr0q1tdmMDmpht3GQjet3qY9SxdzbTe93bELOtS8P3QduYfcEOEx6yq9kNM7ZZPHg37Q-p2xr0MVW-oesma04GPfR3D6q35FWnh4DvHudz8vPr1Y_NNt_dXt9s1rvccFnF3HS8NKaSnRA1FAVowRpZAxipC0oL3nZc0rrEotUtNAJawZBTWWmEsmENY-fk8-I9Ts2IrUEbvR7U0fej9n-U0736d8f2B7V3sxIlJA9PgotFcPivbbveqVMNCgq8BDHTxH58PMy73xOGqMY-GBzSR6GbgipoVXMpgZ_ulS-o8S4Ej92zm4I65aiWHNWSY-I__P2OZ_opOHYPrGidRw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Heidel-Fischer, Hanna M</creator><creator>Kirsch, Roy</creator><creator>Reichelt, Michael</creator><creator>Ahn, Seung-Joon</creator><creator>Wielsch, Natalie</creator><creator>Baxter, Simon W</creator><creator>Heckel, David G</creator><creator>Vogel, Heiko</creator><creator>Kroymann, Juergen</creator><general>Oxford University Press (OUP)</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5773-6578</orcidid></search><sort><creationdate>20190501</creationdate><title>An Insect Counteradaptation against Host Plant Defenses Evolved through Concerted Neofunctionalization</title><author>Heidel-Fischer, Hanna M ; Kirsch, Roy ; Reichelt, Michael ; Ahn, Seung-Joon ; Wielsch, Natalie ; Baxter, Simon W ; Heckel, David G ; Vogel, Heiko ; Kroymann, Juergen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-cf45cc78f6690220a63b8900c8a21124df48195e2dad0b60d63e4187ae05b3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation, Biological - genetics</topic><topic>Animals</topic><topic>Biological Coevolution</topic><topic>Discoveries</topic><topic>Female</topic><topic>Gene Duplication</topic><topic>Genome, Insect</topic><topic>Glucosinolates - metabolism</topic><topic>Herbivory</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Moths - genetics</topic><topic>Sulfatases - genetics</topic><topic>Sulfatases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heidel-Fischer, Hanna M</creatorcontrib><creatorcontrib>Kirsch, Roy</creatorcontrib><creatorcontrib>Reichelt, Michael</creatorcontrib><creatorcontrib>Ahn, Seung-Joon</creatorcontrib><creatorcontrib>Wielsch, Natalie</creatorcontrib><creatorcontrib>Baxter, Simon W</creatorcontrib><creatorcontrib>Heckel, David G</creatorcontrib><creatorcontrib>Vogel, Heiko</creatorcontrib><creatorcontrib>Kroymann, Juergen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heidel-Fischer, Hanna M</au><au>Kirsch, Roy</au><au>Reichelt, Michael</au><au>Ahn, Seung-Joon</au><au>Wielsch, Natalie</au><au>Baxter, Simon W</au><au>Heckel, David G</au><au>Vogel, Heiko</au><au>Kroymann, Juergen</au><au>Purugganan, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Insect Counteradaptation against Host Plant Defenses Evolved through Concerted Neofunctionalization</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>36</volume><issue>5</issue><spage>930</spage><epage>941</epage><pages>930-941</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Antagonistic chemical interactions between herbivorous insects and their host plants are often thought to coevolve in a stepwise process, with an evolutionary innovation on one side being countered by a corresponding advance on the other. Glucosinolate sulfatase (GSS) enzyme activity is essential for the Diamondback moth, Plutella xylostella, to overcome a highly diversified secondary metabolite-based host defense system in the Brassicales. GSS genes are located in an ancient cluster of arylsulfataselike genes, but the exact roles of gene copies and their evolutionary trajectories are unknown. Here, we combine a functional investigation of duplicated insect arylsulfatases with an analysis of associated nucleotide substitution patterns. We show that the Diamondback moth genome encodes three GSSs with distinct substrate spectra and distinct expression patterns in response to glucosinolates. Contrary to our expectations, early functional diversification of gene copies was not indicative of a coevolutionary arms race between host and herbivore. Instead, both copies of a duplicated arylsulfatase gene evolved concertedly in the context of an insect host shift to acquire novel detoxifying functions under positive selection, a pattern of duplicate gene retention that we call "concerted neofunctionalization."</abstract><cop>United States</cop><pub>Oxford University Press (OUP)</pub><pmid>30715408</pmid><doi>10.1093/molbev/msz019</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5773-6578</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0737-4038 |
ispartof | Molecular biology and evolution, 2019-05, Vol.36 (5), p.930-941 |
issn | 0737-4038 1537-1719 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501874 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adaptation, Biological - genetics Animals Biological Coevolution Discoveries Female Gene Duplication Genome, Insect Glucosinolates - metabolism Herbivory Insect Proteins - genetics Insect Proteins - metabolism Life Sciences Moths - genetics Sulfatases - genetics Sulfatases - metabolism |
title | An Insect Counteradaptation against Host Plant Defenses Evolved through Concerted Neofunctionalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Insect%20Counteradaptation%20against%20Host%20Plant%20Defenses%20Evolved%20through%20Concerted%20Neofunctionalization&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Heidel-Fischer,%20Hanna%20M&rft.date=2019-05-01&rft.volume=36&rft.issue=5&rft.spage=930&rft.epage=941&rft.pages=930-941&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msz019&rft_dat=%3Cproquest_pubme%3E2179488043%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179488043&rft_id=info:pmid/30715408&rfr_iscdi=true |