Structural basis of HEAT‐kleisin interactions in the human condensin I subcomplex

Condensin I is a multi‐protein complex that plays an essential role in mitotic chromosome assembly and segregation in eukaryotes. It is composed of five subunits: two SMC (SMC2 and SMC4), a kleisin (CAP‐H), and two HEAT‐repeat (CAP‐D2 and CAP‐G) subunits. Although balancing acts of the two HEAT‐repe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2019-05, Vol.20 (5), p.n/a
Hauptverfasser: Hara, Kodai, Kinoshita, Kazuhisa, Migita, Tomoko, Murakami, Kei, Shimizu, Kenichiro, Takeuchi, Kozo, Hirano, Tatsuya, Hashimoto, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title EMBO reports
container_volume 20
creator Hara, Kodai
Kinoshita, Kazuhisa
Migita, Tomoko
Murakami, Kei
Shimizu, Kenichiro
Takeuchi, Kozo
Hirano, Tatsuya
Hashimoto, Hiroshi
description Condensin I is a multi‐protein complex that plays an essential role in mitotic chromosome assembly and segregation in eukaryotes. It is composed of five subunits: two SMC (SMC2 and SMC4), a kleisin (CAP‐H), and two HEAT‐repeat (CAP‐D2 and CAP‐G) subunits. Although balancing acts of the two HEAT‐repeat subunits have been demonstrated to enable this complex to support the dynamic assembly of chromosomal axes in vertebrate cells, its underlying mechanisms remain poorly understood. Here, we report the crystal structure of a human condensin I subcomplex comprising hCAP‐G and hCAP‐H. hCAP‐H binds to the concave surfaces of a harp‐shaped HEAT‐repeat domain of hCAP‐G. Physical interaction between hCAP‐G and hCAP‐H is indeed essential for mitotic chromosome assembly recapitulated in Xenopus egg cell‐free extracts. Furthermore, this study reveals that the human CAP‐G‐H subcomplex has the ability to interact with not only double‐stranded DNA, but also single‐stranded DNA, suggesting functional divergence of the vertebrate condensin I complex in proper mitotic chromosome assembly. Synopsis Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding. The crystal structure of the hCAP‐G‐H condensin I subcomplex shows an “open” conformation. The interaction between hCAP‐G and hCAP‐H is required for proper assembly of mitotic chromosomes. hCAP‐G‐H interacts not only with double‐stranded DNA, but also single‐stranded DNA. Graphical Abstract Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding.
doi_str_mv 10.15252/embr.201847183
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220129472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5133-d9c55ee6f3db256945fb38305f3fc4e39feb18829ee1137ab7b9771bd5f5551c3</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS1ERUtgzQ6NxIZNWv-MMzYLpFIFWqkIiRaJnWV7rhuXGTu1Z4DueASesU9SpwmhICFWtnW_e3SOD0LPCN4nnHJ6AL1J-xQTUTdEsAdoj9QzOWWkEQ83d0rJ5130OOdLjDGXjXiEdhkWXDAm9tDZ2ZBGO4xJd5XR2ecquup4fnh-8-Pnlw589qHyYYCk7eBjyOVRDQuoFmOvQ2VjaCGsmJMqj8bGftnB9ydox-kuw9PNOUGf3s7Pj46npx_enRwdnk4tJ4xNW2k5B5g51hrKZ7LmzjDBMHfM2RqYdGCIEFQCEMIabRojm4aYljvOObFsgl6vdZej6aG1EIYSQy2T73W6VlF79eck-IW6iF_VjGOCi4UJerkRSPFqhDyo3mcLXacDxDErSiSuJWs4LeiLv9DLOKZQ4ilKy_9TWTcr6mBN2RRzTuC2ZghWd4WpVWFqW1jZeH4_w5b_1VABXq2Bb76D6__pqfn7Nx_vq-P1ci574QLSb9f_MnQLv_e0VA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220129472</pqid></control><display><type>article</type><title>Structural basis of HEAT‐kleisin interactions in the human condensin I subcomplex</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Hara, Kodai ; Kinoshita, Kazuhisa ; Migita, Tomoko ; Murakami, Kei ; Shimizu, Kenichiro ; Takeuchi, Kozo ; Hirano, Tatsuya ; Hashimoto, Hiroshi</creator><creatorcontrib>Hara, Kodai ; Kinoshita, Kazuhisa ; Migita, Tomoko ; Murakami, Kei ; Shimizu, Kenichiro ; Takeuchi, Kozo ; Hirano, Tatsuya ; Hashimoto, Hiroshi</creatorcontrib><description>Condensin I is a multi‐protein complex that plays an essential role in mitotic chromosome assembly and segregation in eukaryotes. It is composed of five subunits: two SMC (SMC2 and SMC4), a kleisin (CAP‐H), and two HEAT‐repeat (CAP‐D2 and CAP‐G) subunits. Although balancing acts of the two HEAT‐repeat subunits have been demonstrated to enable this complex to support the dynamic assembly of chromosomal axes in vertebrate cells, its underlying mechanisms remain poorly understood. Here, we report the crystal structure of a human condensin I subcomplex comprising hCAP‐G and hCAP‐H. hCAP‐H binds to the concave surfaces of a harp‐shaped HEAT‐repeat domain of hCAP‐G. Physical interaction between hCAP‐G and hCAP‐H is indeed essential for mitotic chromosome assembly recapitulated in Xenopus egg cell‐free extracts. Furthermore, this study reveals that the human CAP‐G‐H subcomplex has the ability to interact with not only double‐stranded DNA, but also single‐stranded DNA, suggesting functional divergence of the vertebrate condensin I complex in proper mitotic chromosome assembly. Synopsis Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding. The crystal structure of the hCAP‐G‐H condensin I subcomplex shows an “open” conformation. The interaction between hCAP‐G and hCAP‐H is required for proper assembly of mitotic chromosomes. hCAP‐G‐H interacts not only with double‐stranded DNA, but also single‐stranded DNA. Graphical Abstract Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201847183</identifier><identifier>PMID: 30858338</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adenosine Triphosphatases - metabolism ; Amino Acid Sequence ; Animals ; Assembly ; Cell Cycle Proteins - metabolism ; Chromosomal Proteins, Non-Histone - metabolism ; chromosome condensation ; Chromosome Segregation - physiology ; Chromosomes ; Chromosomes - metabolism ; Condensin ; Crystal structure ; Deoxyribonucleic acid ; Divergence ; DNA ; DNA structure ; DNA, Single-Stranded - metabolism ; DNA-Binding Proteins - metabolism ; EMBO06 ; EMBO40 ; Eukaryotes ; Heat ; HEAT repeats ; HEAT‐kleisin interaction ; Humans ; Multiprotein Complexes - metabolism ; Nuclear Proteins - metabolism ; Protein Subunits - metabolism ; RNA, Double-Stranded - metabolism ; Scientific Report ; Scientific Reports ; Sequence Alignment ; ssDNA binding ; Vertebrates ; Xenopus laevis - metabolism ; X‐ray crystallography</subject><ispartof>EMBO reports, 2019-05, Vol.20 (5), p.n/a</ispartof><rights>The Author(s) 2019</rights><rights>2019 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2019 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2019 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5133-d9c55ee6f3db256945fb38305f3fc4e39feb18829ee1137ab7b9771bd5f5551c3</citedby><cites>FETCH-LOGICAL-c5133-d9c55ee6f3db256945fb38305f3fc4e39feb18829ee1137ab7b9771bd5f5551c3</cites><orcidid>0000-0002-1586-6312 ; 0000-0003-1503-6789 ; 0000-0002-4219-6473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501013/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501013/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30858338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hara, Kodai</creatorcontrib><creatorcontrib>Kinoshita, Kazuhisa</creatorcontrib><creatorcontrib>Migita, Tomoko</creatorcontrib><creatorcontrib>Murakami, Kei</creatorcontrib><creatorcontrib>Shimizu, Kenichiro</creatorcontrib><creatorcontrib>Takeuchi, Kozo</creatorcontrib><creatorcontrib>Hirano, Tatsuya</creatorcontrib><creatorcontrib>Hashimoto, Hiroshi</creatorcontrib><title>Structural basis of HEAT‐kleisin interactions in the human condensin I subcomplex</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Condensin I is a multi‐protein complex that plays an essential role in mitotic chromosome assembly and segregation in eukaryotes. It is composed of five subunits: two SMC (SMC2 and SMC4), a kleisin (CAP‐H), and two HEAT‐repeat (CAP‐D2 and CAP‐G) subunits. Although balancing acts of the two HEAT‐repeat subunits have been demonstrated to enable this complex to support the dynamic assembly of chromosomal axes in vertebrate cells, its underlying mechanisms remain poorly understood. Here, we report the crystal structure of a human condensin I subcomplex comprising hCAP‐G and hCAP‐H. hCAP‐H binds to the concave surfaces of a harp‐shaped HEAT‐repeat domain of hCAP‐G. Physical interaction between hCAP‐G and hCAP‐H is indeed essential for mitotic chromosome assembly recapitulated in Xenopus egg cell‐free extracts. Furthermore, this study reveals that the human CAP‐G‐H subcomplex has the ability to interact with not only double‐stranded DNA, but also single‐stranded DNA, suggesting functional divergence of the vertebrate condensin I complex in proper mitotic chromosome assembly. Synopsis Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding. The crystal structure of the hCAP‐G‐H condensin I subcomplex shows an “open” conformation. The interaction between hCAP‐G and hCAP‐H is required for proper assembly of mitotic chromosomes. hCAP‐G‐H interacts not only with double‐stranded DNA, but also single‐stranded DNA. Graphical Abstract Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Assembly</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>chromosome condensation</subject><subject>Chromosome Segregation - physiology</subject><subject>Chromosomes</subject><subject>Chromosomes - metabolism</subject><subject>Condensin</subject><subject>Crystal structure</subject><subject>Deoxyribonucleic acid</subject><subject>Divergence</subject><subject>DNA</subject><subject>DNA structure</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>EMBO06</subject><subject>EMBO40</subject><subject>Eukaryotes</subject><subject>Heat</subject><subject>HEAT repeats</subject><subject>HEAT‐kleisin interaction</subject><subject>Humans</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Nuclear Proteins - metabolism</subject><subject>Protein Subunits - metabolism</subject><subject>RNA, Double-Stranded - metabolism</subject><subject>Scientific Report</subject><subject>Scientific Reports</subject><subject>Sequence Alignment</subject><subject>ssDNA binding</subject><subject>Vertebrates</subject><subject>Xenopus laevis - metabolism</subject><subject>X‐ray crystallography</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1uEzEUhS1ERUtgzQ6NxIZNWv-MMzYLpFIFWqkIiRaJnWV7rhuXGTu1Z4DueASesU9SpwmhICFWtnW_e3SOD0LPCN4nnHJ6AL1J-xQTUTdEsAdoj9QzOWWkEQ83d0rJ5130OOdLjDGXjXiEdhkWXDAm9tDZ2ZBGO4xJd5XR2ecquup4fnh-8-Pnlw589qHyYYCk7eBjyOVRDQuoFmOvQ2VjaCGsmJMqj8bGftnB9ydox-kuw9PNOUGf3s7Pj46npx_enRwdnk4tJ4xNW2k5B5g51hrKZ7LmzjDBMHfM2RqYdGCIEFQCEMIabRojm4aYljvOObFsgl6vdZej6aG1EIYSQy2T73W6VlF79eck-IW6iF_VjGOCi4UJerkRSPFqhDyo3mcLXacDxDErSiSuJWs4LeiLv9DLOKZQ4ilKy_9TWTcr6mBN2RRzTuC2ZghWd4WpVWFqW1jZeH4_w5b_1VABXq2Bb76D6__pqfn7Nx_vq-P1ci574QLSb9f_MnQLv_e0VA</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Hara, Kodai</creator><creator>Kinoshita, Kazuhisa</creator><creator>Migita, Tomoko</creator><creator>Murakami, Kei</creator><creator>Shimizu, Kenichiro</creator><creator>Takeuchi, Kozo</creator><creator>Hirano, Tatsuya</creator><creator>Hashimoto, Hiroshi</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1586-6312</orcidid><orcidid>https://orcid.org/0000-0003-1503-6789</orcidid><orcidid>https://orcid.org/0000-0002-4219-6473</orcidid></search><sort><creationdate>201905</creationdate><title>Structural basis of HEAT‐kleisin interactions in the human condensin I subcomplex</title><author>Hara, Kodai ; Kinoshita, Kazuhisa ; Migita, Tomoko ; Murakami, Kei ; Shimizu, Kenichiro ; Takeuchi, Kozo ; Hirano, Tatsuya ; Hashimoto, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5133-d9c55ee6f3db256945fb38305f3fc4e39feb18829ee1137ab7b9771bd5f5551c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Assembly</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>chromosome condensation</topic><topic>Chromosome Segregation - physiology</topic><topic>Chromosomes</topic><topic>Chromosomes - metabolism</topic><topic>Condensin</topic><topic>Crystal structure</topic><topic>Deoxyribonucleic acid</topic><topic>Divergence</topic><topic>DNA</topic><topic>DNA structure</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>EMBO06</topic><topic>EMBO40</topic><topic>Eukaryotes</topic><topic>Heat</topic><topic>HEAT repeats</topic><topic>HEAT‐kleisin interaction</topic><topic>Humans</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Nuclear Proteins - metabolism</topic><topic>Protein Subunits - metabolism</topic><topic>RNA, Double-Stranded - metabolism</topic><topic>Scientific Report</topic><topic>Scientific Reports</topic><topic>Sequence Alignment</topic><topic>ssDNA binding</topic><topic>Vertebrates</topic><topic>Xenopus laevis - metabolism</topic><topic>X‐ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hara, Kodai</creatorcontrib><creatorcontrib>Kinoshita, Kazuhisa</creatorcontrib><creatorcontrib>Migita, Tomoko</creatorcontrib><creatorcontrib>Murakami, Kei</creatorcontrib><creatorcontrib>Shimizu, Kenichiro</creatorcontrib><creatorcontrib>Takeuchi, Kozo</creatorcontrib><creatorcontrib>Hirano, Tatsuya</creatorcontrib><creatorcontrib>Hashimoto, Hiroshi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hara, Kodai</au><au>Kinoshita, Kazuhisa</au><au>Migita, Tomoko</au><au>Murakami, Kei</au><au>Shimizu, Kenichiro</au><au>Takeuchi, Kozo</au><au>Hirano, Tatsuya</au><au>Hashimoto, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of HEAT‐kleisin interactions in the human condensin I subcomplex</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2019-05</date><risdate>2019</risdate><volume>20</volume><issue>5</issue><epage>n/a</epage><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Condensin I is a multi‐protein complex that plays an essential role in mitotic chromosome assembly and segregation in eukaryotes. It is composed of five subunits: two SMC (SMC2 and SMC4), a kleisin (CAP‐H), and two HEAT‐repeat (CAP‐D2 and CAP‐G) subunits. Although balancing acts of the two HEAT‐repeat subunits have been demonstrated to enable this complex to support the dynamic assembly of chromosomal axes in vertebrate cells, its underlying mechanisms remain poorly understood. Here, we report the crystal structure of a human condensin I subcomplex comprising hCAP‐G and hCAP‐H. hCAP‐H binds to the concave surfaces of a harp‐shaped HEAT‐repeat domain of hCAP‐G. Physical interaction between hCAP‐G and hCAP‐H is indeed essential for mitotic chromosome assembly recapitulated in Xenopus egg cell‐free extracts. Furthermore, this study reveals that the human CAP‐G‐H subcomplex has the ability to interact with not only double‐stranded DNA, but also single‐stranded DNA, suggesting functional divergence of the vertebrate condensin I complex in proper mitotic chromosome assembly. Synopsis Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding. The crystal structure of the hCAP‐G‐H condensin I subcomplex shows an “open” conformation. The interaction between hCAP‐G and hCAP‐H is required for proper assembly of mitotic chromosomes. hCAP‐G‐H interacts not only with double‐stranded DNA, but also single‐stranded DNA. Graphical Abstract Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30858338</pmid><doi>10.15252/embr.201847183</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1586-6312</orcidid><orcidid>https://orcid.org/0000-0003-1503-6789</orcidid><orcidid>https://orcid.org/0000-0002-4219-6473</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2019-05, Vol.20 (5), p.n/a
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501013
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA Free Journals
subjects Adenosine Triphosphatases - metabolism
Amino Acid Sequence
Animals
Assembly
Cell Cycle Proteins - metabolism
Chromosomal Proteins, Non-Histone - metabolism
chromosome condensation
Chromosome Segregation - physiology
Chromosomes
Chromosomes - metabolism
Condensin
Crystal structure
Deoxyribonucleic acid
Divergence
DNA
DNA structure
DNA, Single-Stranded - metabolism
DNA-Binding Proteins - metabolism
EMBO06
EMBO40
Eukaryotes
Heat
HEAT repeats
HEAT‐kleisin interaction
Humans
Multiprotein Complexes - metabolism
Nuclear Proteins - metabolism
Protein Subunits - metabolism
RNA, Double-Stranded - metabolism
Scientific Report
Scientific Reports
Sequence Alignment
ssDNA binding
Vertebrates
Xenopus laevis - metabolism
X‐ray crystallography
title Structural basis of HEAT‐kleisin interactions in the human condensin I subcomplex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20HEAT%E2%80%90kleisin%20interactions%20in%20the%20human%20condensin%20I%20subcomplex&rft.jtitle=EMBO%20reports&rft.au=Hara,%20Kodai&rft.date=2019-05&rft.volume=20&rft.issue=5&rft.epage=n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.201847183&rft_dat=%3Cproquest_pubme%3E2220129472%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220129472&rft_id=info:pmid/30858338&rfr_iscdi=true