Structural basis of HEAT‐kleisin interactions in the human condensin I subcomplex
Condensin I is a multi‐protein complex that plays an essential role in mitotic chromosome assembly and segregation in eukaryotes. It is composed of five subunits: two SMC (SMC2 and SMC4), a kleisin (CAP‐H), and two HEAT‐repeat (CAP‐D2 and CAP‐G) subunits. Although balancing acts of the two HEAT‐repe...
Gespeichert in:
Veröffentlicht in: | EMBO reports 2019-05, Vol.20 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | EMBO reports |
container_volume | 20 |
creator | Hara, Kodai Kinoshita, Kazuhisa Migita, Tomoko Murakami, Kei Shimizu, Kenichiro Takeuchi, Kozo Hirano, Tatsuya Hashimoto, Hiroshi |
description | Condensin I is a multi‐protein complex that plays an essential role in mitotic chromosome assembly and segregation in eukaryotes. It is composed of five subunits: two SMC (SMC2 and SMC4), a kleisin (CAP‐H), and two HEAT‐repeat (CAP‐D2 and CAP‐G) subunits. Although balancing acts of the two HEAT‐repeat subunits have been demonstrated to enable this complex to support the dynamic assembly of chromosomal axes in vertebrate cells, its underlying mechanisms remain poorly understood. Here, we report the crystal structure of a human condensin I subcomplex comprising hCAP‐G and hCAP‐H. hCAP‐H binds to the concave surfaces of a harp‐shaped HEAT‐repeat domain of hCAP‐G. Physical interaction between hCAP‐G and hCAP‐H is indeed essential for mitotic chromosome assembly recapitulated in
Xenopus
egg cell‐free extracts. Furthermore, this study reveals that the human CAP‐G‐H subcomplex has the ability to interact with not only double‐stranded DNA, but also single‐stranded DNA, suggesting functional divergence of the vertebrate condensin I complex in proper mitotic chromosome assembly.
Synopsis
Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding.
The crystal structure of the hCAP‐G‐H condensin I subcomplex shows an “open” conformation.
The interaction between hCAP‐G and hCAP‐H is required for proper assembly of mitotic chromosomes.
hCAP‐G‐H interacts not only with double‐stranded DNA, but also single‐stranded DNA.
Graphical Abstract
Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding. |
doi_str_mv | 10.15252/embr.201847183 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220129472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5133-d9c55ee6f3db256945fb38305f3fc4e39feb18829ee1137ab7b9771bd5f5551c3</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS1ERUtgzQ6NxIZNWv-MMzYLpFIFWqkIiRaJnWV7rhuXGTu1Z4DueASesU9SpwmhICFWtnW_e3SOD0LPCN4nnHJ6AL1J-xQTUTdEsAdoj9QzOWWkEQ83d0rJ5130OOdLjDGXjXiEdhkWXDAm9tDZ2ZBGO4xJd5XR2ecquup4fnh-8-Pnlw589qHyYYCk7eBjyOVRDQuoFmOvQ2VjaCGsmJMqj8bGftnB9ydox-kuw9PNOUGf3s7Pj46npx_enRwdnk4tJ4xNW2k5B5g51hrKZ7LmzjDBMHfM2RqYdGCIEFQCEMIabRojm4aYljvOObFsgl6vdZej6aG1EIYSQy2T73W6VlF79eck-IW6iF_VjGOCi4UJerkRSPFqhDyo3mcLXacDxDErSiSuJWs4LeiLv9DLOKZQ4ilKy_9TWTcr6mBN2RRzTuC2ZghWd4WpVWFqW1jZeH4_w5b_1VABXq2Bb76D6__pqfn7Nx_vq-P1ci574QLSb9f_MnQLv_e0VA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220129472</pqid></control><display><type>article</type><title>Structural basis of HEAT‐kleisin interactions in the human condensin I subcomplex</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Hara, Kodai ; Kinoshita, Kazuhisa ; Migita, Tomoko ; Murakami, Kei ; Shimizu, Kenichiro ; Takeuchi, Kozo ; Hirano, Tatsuya ; Hashimoto, Hiroshi</creator><creatorcontrib>Hara, Kodai ; Kinoshita, Kazuhisa ; Migita, Tomoko ; Murakami, Kei ; Shimizu, Kenichiro ; Takeuchi, Kozo ; Hirano, Tatsuya ; Hashimoto, Hiroshi</creatorcontrib><description>Condensin I is a multi‐protein complex that plays an essential role in mitotic chromosome assembly and segregation in eukaryotes. It is composed of five subunits: two SMC (SMC2 and SMC4), a kleisin (CAP‐H), and two HEAT‐repeat (CAP‐D2 and CAP‐G) subunits. Although balancing acts of the two HEAT‐repeat subunits have been demonstrated to enable this complex to support the dynamic assembly of chromosomal axes in vertebrate cells, its underlying mechanisms remain poorly understood. Here, we report the crystal structure of a human condensin I subcomplex comprising hCAP‐G and hCAP‐H. hCAP‐H binds to the concave surfaces of a harp‐shaped HEAT‐repeat domain of hCAP‐G. Physical interaction between hCAP‐G and hCAP‐H is indeed essential for mitotic chromosome assembly recapitulated in
Xenopus
egg cell‐free extracts. Furthermore, this study reveals that the human CAP‐G‐H subcomplex has the ability to interact with not only double‐stranded DNA, but also single‐stranded DNA, suggesting functional divergence of the vertebrate condensin I complex in proper mitotic chromosome assembly.
Synopsis
Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding.
The crystal structure of the hCAP‐G‐H condensin I subcomplex shows an “open” conformation.
The interaction between hCAP‐G and hCAP‐H is required for proper assembly of mitotic chromosomes.
hCAP‐G‐H interacts not only with double‐stranded DNA, but also single‐stranded DNA.
Graphical Abstract
Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201847183</identifier><identifier>PMID: 30858338</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adenosine Triphosphatases - metabolism ; Amino Acid Sequence ; Animals ; Assembly ; Cell Cycle Proteins - metabolism ; Chromosomal Proteins, Non-Histone - metabolism ; chromosome condensation ; Chromosome Segregation - physiology ; Chromosomes ; Chromosomes - metabolism ; Condensin ; Crystal structure ; Deoxyribonucleic acid ; Divergence ; DNA ; DNA structure ; DNA, Single-Stranded - metabolism ; DNA-Binding Proteins - metabolism ; EMBO06 ; EMBO40 ; Eukaryotes ; Heat ; HEAT repeats ; HEAT‐kleisin interaction ; Humans ; Multiprotein Complexes - metabolism ; Nuclear Proteins - metabolism ; Protein Subunits - metabolism ; RNA, Double-Stranded - metabolism ; Scientific Report ; Scientific Reports ; Sequence Alignment ; ssDNA binding ; Vertebrates ; Xenopus laevis - metabolism ; X‐ray crystallography</subject><ispartof>EMBO reports, 2019-05, Vol.20 (5), p.n/a</ispartof><rights>The Author(s) 2019</rights><rights>2019 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2019 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2019 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5133-d9c55ee6f3db256945fb38305f3fc4e39feb18829ee1137ab7b9771bd5f5551c3</citedby><cites>FETCH-LOGICAL-c5133-d9c55ee6f3db256945fb38305f3fc4e39feb18829ee1137ab7b9771bd5f5551c3</cites><orcidid>0000-0002-1586-6312 ; 0000-0003-1503-6789 ; 0000-0002-4219-6473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501013/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501013/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30858338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hara, Kodai</creatorcontrib><creatorcontrib>Kinoshita, Kazuhisa</creatorcontrib><creatorcontrib>Migita, Tomoko</creatorcontrib><creatorcontrib>Murakami, Kei</creatorcontrib><creatorcontrib>Shimizu, Kenichiro</creatorcontrib><creatorcontrib>Takeuchi, Kozo</creatorcontrib><creatorcontrib>Hirano, Tatsuya</creatorcontrib><creatorcontrib>Hashimoto, Hiroshi</creatorcontrib><title>Structural basis of HEAT‐kleisin interactions in the human condensin I subcomplex</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Condensin I is a multi‐protein complex that plays an essential role in mitotic chromosome assembly and segregation in eukaryotes. It is composed of five subunits: two SMC (SMC2 and SMC4), a kleisin (CAP‐H), and two HEAT‐repeat (CAP‐D2 and CAP‐G) subunits. Although balancing acts of the two HEAT‐repeat subunits have been demonstrated to enable this complex to support the dynamic assembly of chromosomal axes in vertebrate cells, its underlying mechanisms remain poorly understood. Here, we report the crystal structure of a human condensin I subcomplex comprising hCAP‐G and hCAP‐H. hCAP‐H binds to the concave surfaces of a harp‐shaped HEAT‐repeat domain of hCAP‐G. Physical interaction between hCAP‐G and hCAP‐H is indeed essential for mitotic chromosome assembly recapitulated in
Xenopus
egg cell‐free extracts. Furthermore, this study reveals that the human CAP‐G‐H subcomplex has the ability to interact with not only double‐stranded DNA, but also single‐stranded DNA, suggesting functional divergence of the vertebrate condensin I complex in proper mitotic chromosome assembly.
Synopsis
Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding.
The crystal structure of the hCAP‐G‐H condensin I subcomplex shows an “open” conformation.
The interaction between hCAP‐G and hCAP‐H is required for proper assembly of mitotic chromosomes.
hCAP‐G‐H interacts not only with double‐stranded DNA, but also single‐stranded DNA.
Graphical Abstract
Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Assembly</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>chromosome condensation</subject><subject>Chromosome Segregation - physiology</subject><subject>Chromosomes</subject><subject>Chromosomes - metabolism</subject><subject>Condensin</subject><subject>Crystal structure</subject><subject>Deoxyribonucleic acid</subject><subject>Divergence</subject><subject>DNA</subject><subject>DNA structure</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>EMBO06</subject><subject>EMBO40</subject><subject>Eukaryotes</subject><subject>Heat</subject><subject>HEAT repeats</subject><subject>HEAT‐kleisin interaction</subject><subject>Humans</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Nuclear Proteins - metabolism</subject><subject>Protein Subunits - metabolism</subject><subject>RNA, Double-Stranded - metabolism</subject><subject>Scientific Report</subject><subject>Scientific Reports</subject><subject>Sequence Alignment</subject><subject>ssDNA binding</subject><subject>Vertebrates</subject><subject>Xenopus laevis - metabolism</subject><subject>X‐ray crystallography</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1uEzEUhS1ERUtgzQ6NxIZNWv-MMzYLpFIFWqkIiRaJnWV7rhuXGTu1Z4DueASesU9SpwmhICFWtnW_e3SOD0LPCN4nnHJ6AL1J-xQTUTdEsAdoj9QzOWWkEQ83d0rJ5130OOdLjDGXjXiEdhkWXDAm9tDZ2ZBGO4xJd5XR2ecquup4fnh-8-Pnlw589qHyYYCk7eBjyOVRDQuoFmOvQ2VjaCGsmJMqj8bGftnB9ydox-kuw9PNOUGf3s7Pj46npx_enRwdnk4tJ4xNW2k5B5g51hrKZ7LmzjDBMHfM2RqYdGCIEFQCEMIabRojm4aYljvOObFsgl6vdZej6aG1EIYSQy2T73W6VlF79eck-IW6iF_VjGOCi4UJerkRSPFqhDyo3mcLXacDxDErSiSuJWs4LeiLv9DLOKZQ4ilKy_9TWTcr6mBN2RRzTuC2ZghWd4WpVWFqW1jZeH4_w5b_1VABXq2Bb76D6__pqfn7Nx_vq-P1ci574QLSb9f_MnQLv_e0VA</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Hara, Kodai</creator><creator>Kinoshita, Kazuhisa</creator><creator>Migita, Tomoko</creator><creator>Murakami, Kei</creator><creator>Shimizu, Kenichiro</creator><creator>Takeuchi, Kozo</creator><creator>Hirano, Tatsuya</creator><creator>Hashimoto, Hiroshi</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1586-6312</orcidid><orcidid>https://orcid.org/0000-0003-1503-6789</orcidid><orcidid>https://orcid.org/0000-0002-4219-6473</orcidid></search><sort><creationdate>201905</creationdate><title>Structural basis of HEAT‐kleisin interactions in the human condensin I subcomplex</title><author>Hara, Kodai ; Kinoshita, Kazuhisa ; Migita, Tomoko ; Murakami, Kei ; Shimizu, Kenichiro ; Takeuchi, Kozo ; Hirano, Tatsuya ; Hashimoto, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5133-d9c55ee6f3db256945fb38305f3fc4e39feb18829ee1137ab7b9771bd5f5551c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Assembly</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>chromosome condensation</topic><topic>Chromosome Segregation - physiology</topic><topic>Chromosomes</topic><topic>Chromosomes - metabolism</topic><topic>Condensin</topic><topic>Crystal structure</topic><topic>Deoxyribonucleic acid</topic><topic>Divergence</topic><topic>DNA</topic><topic>DNA structure</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>EMBO06</topic><topic>EMBO40</topic><topic>Eukaryotes</topic><topic>Heat</topic><topic>HEAT repeats</topic><topic>HEAT‐kleisin interaction</topic><topic>Humans</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Nuclear Proteins - metabolism</topic><topic>Protein Subunits - metabolism</topic><topic>RNA, Double-Stranded - metabolism</topic><topic>Scientific Report</topic><topic>Scientific Reports</topic><topic>Sequence Alignment</topic><topic>ssDNA binding</topic><topic>Vertebrates</topic><topic>Xenopus laevis - metabolism</topic><topic>X‐ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hara, Kodai</creatorcontrib><creatorcontrib>Kinoshita, Kazuhisa</creatorcontrib><creatorcontrib>Migita, Tomoko</creatorcontrib><creatorcontrib>Murakami, Kei</creatorcontrib><creatorcontrib>Shimizu, Kenichiro</creatorcontrib><creatorcontrib>Takeuchi, Kozo</creatorcontrib><creatorcontrib>Hirano, Tatsuya</creatorcontrib><creatorcontrib>Hashimoto, Hiroshi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hara, Kodai</au><au>Kinoshita, Kazuhisa</au><au>Migita, Tomoko</au><au>Murakami, Kei</au><au>Shimizu, Kenichiro</au><au>Takeuchi, Kozo</au><au>Hirano, Tatsuya</au><au>Hashimoto, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of HEAT‐kleisin interactions in the human condensin I subcomplex</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2019-05</date><risdate>2019</risdate><volume>20</volume><issue>5</issue><epage>n/a</epage><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Condensin I is a multi‐protein complex that plays an essential role in mitotic chromosome assembly and segregation in eukaryotes. It is composed of five subunits: two SMC (SMC2 and SMC4), a kleisin (CAP‐H), and two HEAT‐repeat (CAP‐D2 and CAP‐G) subunits. Although balancing acts of the two HEAT‐repeat subunits have been demonstrated to enable this complex to support the dynamic assembly of chromosomal axes in vertebrate cells, its underlying mechanisms remain poorly understood. Here, we report the crystal structure of a human condensin I subcomplex comprising hCAP‐G and hCAP‐H. hCAP‐H binds to the concave surfaces of a harp‐shaped HEAT‐repeat domain of hCAP‐G. Physical interaction between hCAP‐G and hCAP‐H is indeed essential for mitotic chromosome assembly recapitulated in
Xenopus
egg cell‐free extracts. Furthermore, this study reveals that the human CAP‐G‐H subcomplex has the ability to interact with not only double‐stranded DNA, but also single‐stranded DNA, suggesting functional divergence of the vertebrate condensin I complex in proper mitotic chromosome assembly.
Synopsis
Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding.
The crystal structure of the hCAP‐G‐H condensin I subcomplex shows an “open” conformation.
The interaction between hCAP‐G and hCAP‐H is required for proper assembly of mitotic chromosomes.
hCAP‐G‐H interacts not only with double‐stranded DNA, but also single‐stranded DNA.
Graphical Abstract
Condensin I has a central role in mitotic chromosome assembly and segregation. The crystal structure of a human condensin I subcomplex reveals that the interaction between hCAP‐G and hCAP‐H is essential for mitotic chromosome assembly and DNA binding.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30858338</pmid><doi>10.15252/embr.201847183</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1586-6312</orcidid><orcidid>https://orcid.org/0000-0003-1503-6789</orcidid><orcidid>https://orcid.org/0000-0002-4219-6473</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2019-05, Vol.20 (5), p.n/a |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501013 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA Free Journals |
subjects | Adenosine Triphosphatases - metabolism Amino Acid Sequence Animals Assembly Cell Cycle Proteins - metabolism Chromosomal Proteins, Non-Histone - metabolism chromosome condensation Chromosome Segregation - physiology Chromosomes Chromosomes - metabolism Condensin Crystal structure Deoxyribonucleic acid Divergence DNA DNA structure DNA, Single-Stranded - metabolism DNA-Binding Proteins - metabolism EMBO06 EMBO40 Eukaryotes Heat HEAT repeats HEAT‐kleisin interaction Humans Multiprotein Complexes - metabolism Nuclear Proteins - metabolism Protein Subunits - metabolism RNA, Double-Stranded - metabolism Scientific Report Scientific Reports Sequence Alignment ssDNA binding Vertebrates Xenopus laevis - metabolism X‐ray crystallography |
title | Structural basis of HEAT‐kleisin interactions in the human condensin I subcomplex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20HEAT%E2%80%90kleisin%20interactions%20in%20the%20human%20condensin%20I%20subcomplex&rft.jtitle=EMBO%20reports&rft.au=Hara,%20Kodai&rft.date=2019-05&rft.volume=20&rft.issue=5&rft.epage=n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.201847183&rft_dat=%3Cproquest_pubme%3E2220129472%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220129472&rft_id=info:pmid/30858338&rfr_iscdi=true |