The agar-specific hydrolase ZgAgaC from the marine bacterium Zobellia galactanivorans defines a new GH16 protein subfamily

Agars are sulfated galactans from red macroalgae and are composed of a d-galactose (G unit) and l-galactose (L unit) alternatively linked by α-1,3 and β-1,4 glycosidic bonds. These polysaccharides display high complexity, with numerous modifications of their backbone (e.g. presence of a 3,6-anhydro-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2019-04, Vol.294 (17), p.6923-6939
Hauptverfasser: Naretto, Anaïs, Fanuel, Mathieu, Ropartz, David, Rogniaux, Hélène, Larocque, Robert, Czjzek, Mirjam, Tellier, Charles, Michel, Gurvan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6939
container_issue 17
container_start_page 6923
container_title The Journal of biological chemistry
container_volume 294
creator Naretto, Anaïs
Fanuel, Mathieu
Ropartz, David
Rogniaux, Hélène
Larocque, Robert
Czjzek, Mirjam
Tellier, Charles
Michel, Gurvan
description Agars are sulfated galactans from red macroalgae and are composed of a d-galactose (G unit) and l-galactose (L unit) alternatively linked by α-1,3 and β-1,4 glycosidic bonds. These polysaccharides display high complexity, with numerous modifications of their backbone (e.g. presence of a 3,6-anhydro-bridge (LA unit) and sulfations and methylation). Currently, bacterial polysaccharidases that hydrolyze agars (β-agarases and β-porphyranases) have been characterized on simple agarose and more rarely on porphyran, a polymer containing both agarobiose (G-LA) and porphyranobiose (GL6S) motifs. How bacteria can degrade complex agars remains therefore an open question. Here, we studied an enzyme from the marine bacterium Zobellia galactanivorans (ZgAgaC) that is distantly related to the glycoside hydrolase 16 (GH16) family β-agarases and β-porphyranases. Using a large red algae collection, we demonstrate that ZgAgaC hydrolyzes not only agarose but also complex agars from Ceramiales species. Using tandem MS analysis, we elucidated the structure of a purified hexasaccharide product, L6S-G-LA2Me-G(2Pentose)-LA2S-G, released by the activity of ZgAgaC on agar extracted from Osmundea pinnatifida. By resolving the crystal structure of ZgAgaC at high resolution (1.3 Å) and comparison with the structures of ZgAgaB and ZgPorA in complex with their respective substrates, we determined that ZgAgaC recognizes agarose via a mechanism different from that of classical β-agarases. Moreover, we identified conserved residues involved in the binding of complex oligoagars and demonstrate a probable influence of the acidic polysaccharide’s pH microenvironment on hydrolase activity. Finally, a phylogenetic analysis supported the notion that ZgAgaC homologs define a new GH16 subfamily distinct from β-porphyranases and classical β-agarases.
doi_str_mv 10.1074/jbc.RA118.006609
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6497945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820366266</els_id><sourcerecordid>2189553645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-7aef56953bb6298441b4d124c3149d452c310ba5fcdd19b831f5cbd1284f9beb3</originalsourceid><addsrcrecordid>eNp1kc-LEzEcxYMobnf17jFHPUxNJj868SCUoluhIMgKspeQZL5ps8xMajJTqX_9ZncWQcFcEr557xPyHkJvKFlSsuLv76xbfltT2iwJkZKoZ2hBScMqJuiP52hBSE0rVYvmAl3mfEfK4oq-RBeMNFwKyRbo980BsNmbVOUjuOCDw4dzm2JnMuDb_XpvNtin2OOx6HqTwgDYGjdCClOPb6OFrgsG701XhmYIp5jMkHELvigzNniAX_h6SyU-pjhCGHCerDd96M6v0Atvugyvn_Yr9P3zp5vNttp9vf6yWe8qJ4gYq5UBL6QSzFpZq4ZzanlLa-4Y5arloi4HYo3wrm2psg2jXjhbFA33yoJlV-jjzD1OtofWwTAm0-ljCuU_Zx1N0H_fDOGg9_GkJVcrxUUBvJsBh39s2_VOP8xKzGzVSHqiRfv26bEUf06QR92H7EpIZoA4ZV3TRgnB5COWzFKXYs4J_B82JfqhXl3q1Y_16rneYvkwW6DkdQqQdHYBBgdtSOBG3cbwf_M9jDCsaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189553645</pqid></control><display><type>article</type><title>The agar-specific hydrolase ZgAgaC from the marine bacterium Zobellia galactanivorans defines a new GH16 protein subfamily</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Naretto, Anaïs ; Fanuel, Mathieu ; Ropartz, David ; Rogniaux, Hélène ; Larocque, Robert ; Czjzek, Mirjam ; Tellier, Charles ; Michel, Gurvan</creator><creatorcontrib>Naretto, Anaïs ; Fanuel, Mathieu ; Ropartz, David ; Rogniaux, Hélène ; Larocque, Robert ; Czjzek, Mirjam ; Tellier, Charles ; Michel, Gurvan</creatorcontrib><description>Agars are sulfated galactans from red macroalgae and are composed of a d-galactose (G unit) and l-galactose (L unit) alternatively linked by α-1,3 and β-1,4 glycosidic bonds. These polysaccharides display high complexity, with numerous modifications of their backbone (e.g. presence of a 3,6-anhydro-bridge (LA unit) and sulfations and methylation). Currently, bacterial polysaccharidases that hydrolyze agars (β-agarases and β-porphyranases) have been characterized on simple agarose and more rarely on porphyran, a polymer containing both agarobiose (G-LA) and porphyranobiose (GL6S) motifs. How bacteria can degrade complex agars remains therefore an open question. Here, we studied an enzyme from the marine bacterium Zobellia galactanivorans (ZgAgaC) that is distantly related to the glycoside hydrolase 16 (GH16) family β-agarases and β-porphyranases. Using a large red algae collection, we demonstrate that ZgAgaC hydrolyzes not only agarose but also complex agars from Ceramiales species. Using tandem MS analysis, we elucidated the structure of a purified hexasaccharide product, L6S-G-LA2Me-G(2Pentose)-LA2S-G, released by the activity of ZgAgaC on agar extracted from Osmundea pinnatifida. By resolving the crystal structure of ZgAgaC at high resolution (1.3 Å) and comparison with the structures of ZgAgaB and ZgPorA in complex with their respective substrates, we determined that ZgAgaC recognizes agarose via a mechanism different from that of classical β-agarases. Moreover, we identified conserved residues involved in the binding of complex oligoagars and demonstrate a probable influence of the acidic polysaccharide’s pH microenvironment on hydrolase activity. Finally, a phylogenetic analysis supported the notion that ZgAgaC homologs define a new GH16 subfamily distinct from β-porphyranases and classical β-agarases.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.006609</identifier><identifier>PMID: 30846563</identifier><language>eng</language><publisher>11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A: Elsevier Inc</publisher><subject>agar ; algae ; bacteria ; Biochemistry ; Biochemistry, Molecular Biology ; crystal structure ; Enzymology ; evolution ; GH16 ; glycoside hydrolase ; Life Sciences ; marine bacteria ; mass spectrometry ; pH microenvironment ; polysaccharide ; red algae ; Structural Biology ; sulfated polysaccharide</subject><ispartof>The Journal of biological chemistry, 2019-04, Vol.294 (17), p.6923-6939</ispartof><rights>2019 © 2019 Naretto et al.</rights><rights>Copyright</rights><rights>2019 Naretto et al. 2019 Naretto et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-7aef56953bb6298441b4d124c3149d452c310ba5fcdd19b831f5cbd1284f9beb3</citedby><cites>FETCH-LOGICAL-c505t-7aef56953bb6298441b4d124c3149d452c310ba5fcdd19b831f5cbd1284f9beb3</cites><orcidid>0000-0002-3009-6205 ; 0000-0002-2158-7459 ; 0000-0002-7483-2841 ; 0000-0001-8384-8266 ; 0000-0001-6083-2034 ; 0000-0003-4767-6940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497945/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497945/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02137861$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Naretto, Anaïs</creatorcontrib><creatorcontrib>Fanuel, Mathieu</creatorcontrib><creatorcontrib>Ropartz, David</creatorcontrib><creatorcontrib>Rogniaux, Hélène</creatorcontrib><creatorcontrib>Larocque, Robert</creatorcontrib><creatorcontrib>Czjzek, Mirjam</creatorcontrib><creatorcontrib>Tellier, Charles</creatorcontrib><creatorcontrib>Michel, Gurvan</creatorcontrib><title>The agar-specific hydrolase ZgAgaC from the marine bacterium Zobellia galactanivorans defines a new GH16 protein subfamily</title><title>The Journal of biological chemistry</title><description>Agars are sulfated galactans from red macroalgae and are composed of a d-galactose (G unit) and l-galactose (L unit) alternatively linked by α-1,3 and β-1,4 glycosidic bonds. These polysaccharides display high complexity, with numerous modifications of their backbone (e.g. presence of a 3,6-anhydro-bridge (LA unit) and sulfations and methylation). Currently, bacterial polysaccharidases that hydrolyze agars (β-agarases and β-porphyranases) have been characterized on simple agarose and more rarely on porphyran, a polymer containing both agarobiose (G-LA) and porphyranobiose (GL6S) motifs. How bacteria can degrade complex agars remains therefore an open question. Here, we studied an enzyme from the marine bacterium Zobellia galactanivorans (ZgAgaC) that is distantly related to the glycoside hydrolase 16 (GH16) family β-agarases and β-porphyranases. Using a large red algae collection, we demonstrate that ZgAgaC hydrolyzes not only agarose but also complex agars from Ceramiales species. Using tandem MS analysis, we elucidated the structure of a purified hexasaccharide product, L6S-G-LA2Me-G(2Pentose)-LA2S-G, released by the activity of ZgAgaC on agar extracted from Osmundea pinnatifida. By resolving the crystal structure of ZgAgaC at high resolution (1.3 Å) and comparison with the structures of ZgAgaB and ZgPorA in complex with their respective substrates, we determined that ZgAgaC recognizes agarose via a mechanism different from that of classical β-agarases. Moreover, we identified conserved residues involved in the binding of complex oligoagars and demonstrate a probable influence of the acidic polysaccharide’s pH microenvironment on hydrolase activity. Finally, a phylogenetic analysis supported the notion that ZgAgaC homologs define a new GH16 subfamily distinct from β-porphyranases and classical β-agarases.</description><subject>agar</subject><subject>algae</subject><subject>bacteria</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>crystal structure</subject><subject>Enzymology</subject><subject>evolution</subject><subject>GH16</subject><subject>glycoside hydrolase</subject><subject>Life Sciences</subject><subject>marine bacteria</subject><subject>mass spectrometry</subject><subject>pH microenvironment</subject><subject>polysaccharide</subject><subject>red algae</subject><subject>Structural Biology</subject><subject>sulfated polysaccharide</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc-LEzEcxYMobnf17jFHPUxNJj868SCUoluhIMgKspeQZL5ps8xMajJTqX_9ZncWQcFcEr557xPyHkJvKFlSsuLv76xbfltT2iwJkZKoZ2hBScMqJuiP52hBSE0rVYvmAl3mfEfK4oq-RBeMNFwKyRbo980BsNmbVOUjuOCDw4dzm2JnMuDb_XpvNtin2OOx6HqTwgDYGjdCClOPb6OFrgsG701XhmYIp5jMkHELvigzNniAX_h6SyU-pjhCGHCerDd96M6v0Atvugyvn_Yr9P3zp5vNttp9vf6yWe8qJ4gYq5UBL6QSzFpZq4ZzanlLa-4Y5arloi4HYo3wrm2psg2jXjhbFA33yoJlV-jjzD1OtofWwTAm0-ljCuU_Zx1N0H_fDOGg9_GkJVcrxUUBvJsBh39s2_VOP8xKzGzVSHqiRfv26bEUf06QR92H7EpIZoA4ZV3TRgnB5COWzFKXYs4J_B82JfqhXl3q1Y_16rneYvkwW6DkdQqQdHYBBgdtSOBG3cbwf_M9jDCsaA</recordid><startdate>20190426</startdate><enddate>20190426</enddate><creator>Naretto, Anaïs</creator><creator>Fanuel, Mathieu</creator><creator>Ropartz, David</creator><creator>Rogniaux, Hélène</creator><creator>Larocque, Robert</creator><creator>Czjzek, Mirjam</creator><creator>Tellier, Charles</creator><creator>Michel, Gurvan</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3009-6205</orcidid><orcidid>https://orcid.org/0000-0002-2158-7459</orcidid><orcidid>https://orcid.org/0000-0002-7483-2841</orcidid><orcidid>https://orcid.org/0000-0001-8384-8266</orcidid><orcidid>https://orcid.org/0000-0001-6083-2034</orcidid><orcidid>https://orcid.org/0000-0003-4767-6940</orcidid></search><sort><creationdate>20190426</creationdate><title>The agar-specific hydrolase ZgAgaC from the marine bacterium Zobellia galactanivorans defines a new GH16 protein subfamily</title><author>Naretto, Anaïs ; Fanuel, Mathieu ; Ropartz, David ; Rogniaux, Hélène ; Larocque, Robert ; Czjzek, Mirjam ; Tellier, Charles ; Michel, Gurvan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-7aef56953bb6298441b4d124c3149d452c310ba5fcdd19b831f5cbd1284f9beb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>agar</topic><topic>algae</topic><topic>bacteria</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>crystal structure</topic><topic>Enzymology</topic><topic>evolution</topic><topic>GH16</topic><topic>glycoside hydrolase</topic><topic>Life Sciences</topic><topic>marine bacteria</topic><topic>mass spectrometry</topic><topic>pH microenvironment</topic><topic>polysaccharide</topic><topic>red algae</topic><topic>Structural Biology</topic><topic>sulfated polysaccharide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naretto, Anaïs</creatorcontrib><creatorcontrib>Fanuel, Mathieu</creatorcontrib><creatorcontrib>Ropartz, David</creatorcontrib><creatorcontrib>Rogniaux, Hélène</creatorcontrib><creatorcontrib>Larocque, Robert</creatorcontrib><creatorcontrib>Czjzek, Mirjam</creatorcontrib><creatorcontrib>Tellier, Charles</creatorcontrib><creatorcontrib>Michel, Gurvan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naretto, Anaïs</au><au>Fanuel, Mathieu</au><au>Ropartz, David</au><au>Rogniaux, Hélène</au><au>Larocque, Robert</au><au>Czjzek, Mirjam</au><au>Tellier, Charles</au><au>Michel, Gurvan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The agar-specific hydrolase ZgAgaC from the marine bacterium Zobellia galactanivorans defines a new GH16 protein subfamily</atitle><jtitle>The Journal of biological chemistry</jtitle><date>2019-04-26</date><risdate>2019</risdate><volume>294</volume><issue>17</issue><spage>6923</spage><epage>6939</epage><pages>6923-6939</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Agars are sulfated galactans from red macroalgae and are composed of a d-galactose (G unit) and l-galactose (L unit) alternatively linked by α-1,3 and β-1,4 glycosidic bonds. These polysaccharides display high complexity, with numerous modifications of their backbone (e.g. presence of a 3,6-anhydro-bridge (LA unit) and sulfations and methylation). Currently, bacterial polysaccharidases that hydrolyze agars (β-agarases and β-porphyranases) have been characterized on simple agarose and more rarely on porphyran, a polymer containing both agarobiose (G-LA) and porphyranobiose (GL6S) motifs. How bacteria can degrade complex agars remains therefore an open question. Here, we studied an enzyme from the marine bacterium Zobellia galactanivorans (ZgAgaC) that is distantly related to the glycoside hydrolase 16 (GH16) family β-agarases and β-porphyranases. Using a large red algae collection, we demonstrate that ZgAgaC hydrolyzes not only agarose but also complex agars from Ceramiales species. Using tandem MS analysis, we elucidated the structure of a purified hexasaccharide product, L6S-G-LA2Me-G(2Pentose)-LA2S-G, released by the activity of ZgAgaC on agar extracted from Osmundea pinnatifida. By resolving the crystal structure of ZgAgaC at high resolution (1.3 Å) and comparison with the structures of ZgAgaB and ZgPorA in complex with their respective substrates, we determined that ZgAgaC recognizes agarose via a mechanism different from that of classical β-agarases. Moreover, we identified conserved residues involved in the binding of complex oligoagars and demonstrate a probable influence of the acidic polysaccharide’s pH microenvironment on hydrolase activity. Finally, a phylogenetic analysis supported the notion that ZgAgaC homologs define a new GH16 subfamily distinct from β-porphyranases and classical β-agarases.</abstract><cop>11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A</cop><pub>Elsevier Inc</pub><pmid>30846563</pmid><doi>10.1074/jbc.RA118.006609</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3009-6205</orcidid><orcidid>https://orcid.org/0000-0002-2158-7459</orcidid><orcidid>https://orcid.org/0000-0002-7483-2841</orcidid><orcidid>https://orcid.org/0000-0001-8384-8266</orcidid><orcidid>https://orcid.org/0000-0001-6083-2034</orcidid><orcidid>https://orcid.org/0000-0003-4767-6940</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2019-04, Vol.294 (17), p.6923-6939
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6497945
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects agar
algae
bacteria
Biochemistry
Biochemistry, Molecular Biology
crystal structure
Enzymology
evolution
GH16
glycoside hydrolase
Life Sciences
marine bacteria
mass spectrometry
pH microenvironment
polysaccharide
red algae
Structural Biology
sulfated polysaccharide
title The agar-specific hydrolase ZgAgaC from the marine bacterium Zobellia galactanivorans defines a new GH16 protein subfamily
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20agar-specific%20hydrolase%20ZgAgaC%20from%20the%20marine%20bacterium%20Zobellia%20galactanivorans%20defines%20a%20new%20GH16%20protein%20subfamily&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Naretto,%20Ana%C3%AFs&rft.date=2019-04-26&rft.volume=294&rft.issue=17&rft.spage=6923&rft.epage=6939&rft.pages=6923-6939&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.006609&rft_dat=%3Cproquest_pubme%3E2189553645%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189553645&rft_id=info:pmid/30846563&rft_els_id=S0021925820366266&rfr_iscdi=true