Microvesicle Proteomic Profiling of Uterine Liquid Biopsy for Ovarian Cancer Early Detection

High-grade ovarian cancer accounts for higher mortality rates because of ineffective biomarkers for early diagnosis. Deep proteome profiling of the microvesicles from a total of 187 liquid biopsies of Utero-tubal Lavage, combined with support vector machine algorithms, extracted a 9-protein classifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular & cellular proteomics 2019-05, Vol.18 (5), p.865-875
Hauptverfasser: Barnabas, Georgina D., Bahar-Shany, Keren, Sapoznik, Stav, Helpman, Limor, Kadan, Yfat, Beiner, Mario, Weitzner, Omer, Arbib, Nissim, Korach, Jacob, Perri, Tamar, Katz, Guy, Blecher, Anna, Brandt, Benny, Friedman, Eitan, Stockheim, David, Jakobson-Setton, Ariella, Eitan, Ram, Armon, Shunit, Brand, Hadar, Zadok, Oranit, Aviel-Ronen, Sarit, Harel, Michal, Geiger, Tamar, Levanon, Keren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 875
container_issue 5
container_start_page 865
container_title Molecular & cellular proteomics
container_volume 18
creator Barnabas, Georgina D.
Bahar-Shany, Keren
Sapoznik, Stav
Helpman, Limor
Kadan, Yfat
Beiner, Mario
Weitzner, Omer
Arbib, Nissim
Korach, Jacob
Perri, Tamar
Katz, Guy
Blecher, Anna
Brandt, Benny
Friedman, Eitan
Stockheim, David
Jakobson-Setton, Ariella
Eitan, Ram
Armon, Shunit
Brand, Hadar
Zadok, Oranit
Aviel-Ronen, Sarit
Harel, Michal
Geiger, Tamar
Levanon, Keren
description High-grade ovarian cancer accounts for higher mortality rates because of ineffective biomarkers for early diagnosis. Deep proteome profiling of the microvesicles from a total of 187 liquid biopsies of Utero-tubal Lavage, combined with support vector machine algorithms, extracted a 9-protein classifier with high accuracy. The signature predicted all the early stage lesions, and outperformed the known markers CA125 and HE4 with 70‥ sensitivity and 76.2‥ specificity. Our study reveals UtL-microvesicle proteomics as the potential biomarker source for early diagnosis of HGOC. [Display omitted] Highlights •Microvesicle proteomics of 187 utero-tubal lavage samples for early diagnosis of HGOC.•Machine learning-based classification of a 9-protein signature with high predictive power.•Signature has 70‥ sensitivity and 76.2‥ specificity, predicting stage I lesions. High-grade ovarian cancer (HGOC) is the leading cause of mortality from gynecological malignancies, because of diagnosis at a metastatic stage. Current screening options fail to improve mortality because of the absence of early-stage-specific biomarkers. We postulated that a liquid biopsy, such as utero-tubal lavage (UtL), may identify localized lesions better than systemic approaches of serum/plasma analysis. Further, while mutation-based assays are challenged by the rarity of tumor DNA within nonmutated DNA, analyzing the proteomic profile, is expected to enable earlier detection, as it reveals perturbations in both the tumor as well as in its microenvironment. To attain deep proteomic coverage and overcome the high dynamic range of this body fluid, we applied our method for microvesicle proteomics to the UtL samples. Liquid biopsies from HGOC patients (n = 49) and controls (n = 127) were divided into a discovery and validation sets. Data-dependent analysis of the samples on the Q-Exactive mass spectrometer provided depth of 8578 UtL proteins in total, and on average ∼3000 proteins per sample. We used support vector machine algorithms for sample classification, and crossed three feature-selection algorithms, to construct and validate a 9-protein classifier with 70% sensitivity and 76.2% specificity. The signature correctly identified all Stage I lesions. These results demonstrate the potential power of microvesicle-based proteomic biomarkers for early cancer diagnosis.
doi_str_mv 10.1074/mcp.RA119.001362
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6495259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535947620315991</els_id><sourcerecordid>2219011960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-eb4ebe78508e777fc9b80b1ed8fa49223fe218f1c22f55f9b7a42d2ba5cbf8c13</originalsourceid><addsrcrecordid>eNp1kU1PGzEURa2qVaHAvivkZTdJbY89nukCCcJHkYJAqOyQLI_nGV41M07sSaT8-5qGRrDoyk_yfdfWOYR85WzKmZbfe7eY3p9yXk8Z40UpPpB9rgo1qWUlP-5mXe6RLyn9ZkwwrtVnslcwXTJVVPvk8QZdDGtI6DqgdzGMEHp0L5PHDocnGjx9GCHiAHSOyxW29AzDIm2oD5Herm1EO9CZHRxEemFjt6HnMIIbMQyH5JO3XYKj1_OAPFxe_Jr9nMxvr65np_OJk1KPE2gkNKArxSrQWntXNxVrOLSVt7IWovAgeOW5E8Ir5etGWyla0VjlGl85XhyQk23vYtX00DoYxmg7s4jY27gxwaJ5fzPgs3kKa1PKWglV54JvrwUxLFeQRtNjctB1doCwSkYIXrOMuWQ5yrbRjC2lCH73DGfmRYrJUsxfKWYrJa8cv_3ebuGfhRz4sQ1AhrRGiCY5hEy0xZhJmjbg_9v_AO3Lnrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2219011960</pqid></control><display><type>article</type><title>Microvesicle Proteomic Profiling of Uterine Liquid Biopsy for Ovarian Cancer Early Detection</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Barnabas, Georgina D. ; Bahar-Shany, Keren ; Sapoznik, Stav ; Helpman, Limor ; Kadan, Yfat ; Beiner, Mario ; Weitzner, Omer ; Arbib, Nissim ; Korach, Jacob ; Perri, Tamar ; Katz, Guy ; Blecher, Anna ; Brandt, Benny ; Friedman, Eitan ; Stockheim, David ; Jakobson-Setton, Ariella ; Eitan, Ram ; Armon, Shunit ; Brand, Hadar ; Zadok, Oranit ; Aviel-Ronen, Sarit ; Harel, Michal ; Geiger, Tamar ; Levanon, Keren</creator><creatorcontrib>Barnabas, Georgina D. ; Bahar-Shany, Keren ; Sapoznik, Stav ; Helpman, Limor ; Kadan, Yfat ; Beiner, Mario ; Weitzner, Omer ; Arbib, Nissim ; Korach, Jacob ; Perri, Tamar ; Katz, Guy ; Blecher, Anna ; Brandt, Benny ; Friedman, Eitan ; Stockheim, David ; Jakobson-Setton, Ariella ; Eitan, Ram ; Armon, Shunit ; Brand, Hadar ; Zadok, Oranit ; Aviel-Ronen, Sarit ; Harel, Michal ; Geiger, Tamar ; Levanon, Keren</creatorcontrib><description>High-grade ovarian cancer accounts for higher mortality rates because of ineffective biomarkers for early diagnosis. Deep proteome profiling of the microvesicles from a total of 187 liquid biopsies of Utero-tubal Lavage, combined with support vector machine algorithms, extracted a 9-protein classifier with high accuracy. The signature predicted all the early stage lesions, and outperformed the known markers CA125 and HE4 with 70‥ sensitivity and 76.2‥ specificity. Our study reveals UtL-microvesicle proteomics as the potential biomarker source for early diagnosis of HGOC. [Display omitted] Highlights •Microvesicle proteomics of 187 utero-tubal lavage samples for early diagnosis of HGOC.•Machine learning-based classification of a 9-protein signature with high predictive power.•Signature has 70‥ sensitivity and 76.2‥ specificity, predicting stage I lesions. High-grade ovarian cancer (HGOC) is the leading cause of mortality from gynecological malignancies, because of diagnosis at a metastatic stage. Current screening options fail to improve mortality because of the absence of early-stage-specific biomarkers. We postulated that a liquid biopsy, such as utero-tubal lavage (UtL), may identify localized lesions better than systemic approaches of serum/plasma analysis. Further, while mutation-based assays are challenged by the rarity of tumor DNA within nonmutated DNA, analyzing the proteomic profile, is expected to enable earlier detection, as it reveals perturbations in both the tumor as well as in its microenvironment. To attain deep proteomic coverage and overcome the high dynamic range of this body fluid, we applied our method for microvesicle proteomics to the UtL samples. Liquid biopsies from HGOC patients (n = 49) and controls (n = 127) were divided into a discovery and validation sets. Data-dependent analysis of the samples on the Q-Exactive mass spectrometer provided depth of 8578 UtL proteins in total, and on average ∼3000 proteins per sample. We used support vector machine algorithms for sample classification, and crossed three feature-selection algorithms, to construct and validate a 9-protein classifier with 70% sensitivity and 76.2% specificity. The signature correctly identified all Stage I lesions. These results demonstrate the potential power of microvesicle-based proteomic biomarkers for early cancer diagnosis.</description><identifier>ISSN: 1535-9476</identifier><identifier>EISSN: 1535-9484</identifier><identifier>DOI: 10.1074/mcp.RA119.001362</identifier><identifier>PMID: 30760538</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biofluids ; Biomarker: Diagnostic ; Cancer biomarker(s) ; Cell-Derived Microparticles - metabolism ; Early Detection of Cancer ; Female ; Gene Expression Regulation, Neoplastic ; Humans ; Liquid Biopsy ; Mass Spectrometry ; Neoplasm Grading ; Neoplasm Proteins - metabolism ; Ovarian cancer ; Ovarian Neoplasms - diagnosis ; Ovarian Neoplasms - genetics ; Ovarian Neoplasms - pathology ; Proteomics - methods ; Reproducibility of Results ; Uterus - pathology</subject><ispartof>Molecular &amp; cellular proteomics, 2019-05, Vol.18 (5), p.865-875</ispartof><rights>2019 © 2019 Barnabas et al.</rights><rights>2019 Barnabas et al.</rights><rights>2019 Barnabas et al. 2019 Barnabas et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-eb4ebe78508e777fc9b80b1ed8fa49223fe218f1c22f55f9b7a42d2ba5cbf8c13</citedby><cites>FETCH-LOGICAL-c447t-eb4ebe78508e777fc9b80b1ed8fa49223fe218f1c22f55f9b7a42d2ba5cbf8c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6495259/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6495259/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30760538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barnabas, Georgina D.</creatorcontrib><creatorcontrib>Bahar-Shany, Keren</creatorcontrib><creatorcontrib>Sapoznik, Stav</creatorcontrib><creatorcontrib>Helpman, Limor</creatorcontrib><creatorcontrib>Kadan, Yfat</creatorcontrib><creatorcontrib>Beiner, Mario</creatorcontrib><creatorcontrib>Weitzner, Omer</creatorcontrib><creatorcontrib>Arbib, Nissim</creatorcontrib><creatorcontrib>Korach, Jacob</creatorcontrib><creatorcontrib>Perri, Tamar</creatorcontrib><creatorcontrib>Katz, Guy</creatorcontrib><creatorcontrib>Blecher, Anna</creatorcontrib><creatorcontrib>Brandt, Benny</creatorcontrib><creatorcontrib>Friedman, Eitan</creatorcontrib><creatorcontrib>Stockheim, David</creatorcontrib><creatorcontrib>Jakobson-Setton, Ariella</creatorcontrib><creatorcontrib>Eitan, Ram</creatorcontrib><creatorcontrib>Armon, Shunit</creatorcontrib><creatorcontrib>Brand, Hadar</creatorcontrib><creatorcontrib>Zadok, Oranit</creatorcontrib><creatorcontrib>Aviel-Ronen, Sarit</creatorcontrib><creatorcontrib>Harel, Michal</creatorcontrib><creatorcontrib>Geiger, Tamar</creatorcontrib><creatorcontrib>Levanon, Keren</creatorcontrib><title>Microvesicle Proteomic Profiling of Uterine Liquid Biopsy for Ovarian Cancer Early Detection</title><title>Molecular &amp; cellular proteomics</title><addtitle>Mol Cell Proteomics</addtitle><description>High-grade ovarian cancer accounts for higher mortality rates because of ineffective biomarkers for early diagnosis. Deep proteome profiling of the microvesicles from a total of 187 liquid biopsies of Utero-tubal Lavage, combined with support vector machine algorithms, extracted a 9-protein classifier with high accuracy. The signature predicted all the early stage lesions, and outperformed the known markers CA125 and HE4 with 70‥ sensitivity and 76.2‥ specificity. Our study reveals UtL-microvesicle proteomics as the potential biomarker source for early diagnosis of HGOC. [Display omitted] Highlights •Microvesicle proteomics of 187 utero-tubal lavage samples for early diagnosis of HGOC.•Machine learning-based classification of a 9-protein signature with high predictive power.•Signature has 70‥ sensitivity and 76.2‥ specificity, predicting stage I lesions. High-grade ovarian cancer (HGOC) is the leading cause of mortality from gynecological malignancies, because of diagnosis at a metastatic stage. Current screening options fail to improve mortality because of the absence of early-stage-specific biomarkers. We postulated that a liquid biopsy, such as utero-tubal lavage (UtL), may identify localized lesions better than systemic approaches of serum/plasma analysis. Further, while mutation-based assays are challenged by the rarity of tumor DNA within nonmutated DNA, analyzing the proteomic profile, is expected to enable earlier detection, as it reveals perturbations in both the tumor as well as in its microenvironment. To attain deep proteomic coverage and overcome the high dynamic range of this body fluid, we applied our method for microvesicle proteomics to the UtL samples. Liquid biopsies from HGOC patients (n = 49) and controls (n = 127) were divided into a discovery and validation sets. Data-dependent analysis of the samples on the Q-Exactive mass spectrometer provided depth of 8578 UtL proteins in total, and on average ∼3000 proteins per sample. We used support vector machine algorithms for sample classification, and crossed three feature-selection algorithms, to construct and validate a 9-protein classifier with 70% sensitivity and 76.2% specificity. The signature correctly identified all Stage I lesions. These results demonstrate the potential power of microvesicle-based proteomic biomarkers for early cancer diagnosis.</description><subject>Biofluids</subject><subject>Biomarker: Diagnostic</subject><subject>Cancer biomarker(s)</subject><subject>Cell-Derived Microparticles - metabolism</subject><subject>Early Detection of Cancer</subject><subject>Female</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humans</subject><subject>Liquid Biopsy</subject><subject>Mass Spectrometry</subject><subject>Neoplasm Grading</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Ovarian cancer</subject><subject>Ovarian Neoplasms - diagnosis</subject><subject>Ovarian Neoplasms - genetics</subject><subject>Ovarian Neoplasms - pathology</subject><subject>Proteomics - methods</subject><subject>Reproducibility of Results</subject><subject>Uterus - pathology</subject><issn>1535-9476</issn><issn>1535-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1PGzEURa2qVaHAvivkZTdJbY89nukCCcJHkYJAqOyQLI_nGV41M07sSaT8-5qGRrDoyk_yfdfWOYR85WzKmZbfe7eY3p9yXk8Z40UpPpB9rgo1qWUlP-5mXe6RLyn9ZkwwrtVnslcwXTJVVPvk8QZdDGtI6DqgdzGMEHp0L5PHDocnGjx9GCHiAHSOyxW29AzDIm2oD5Herm1EO9CZHRxEemFjt6HnMIIbMQyH5JO3XYKj1_OAPFxe_Jr9nMxvr65np_OJk1KPE2gkNKArxSrQWntXNxVrOLSVt7IWovAgeOW5E8Ir5etGWyla0VjlGl85XhyQk23vYtX00DoYxmg7s4jY27gxwaJ5fzPgs3kKa1PKWglV54JvrwUxLFeQRtNjctB1doCwSkYIXrOMuWQ5yrbRjC2lCH73DGfmRYrJUsxfKWYrJa8cv_3ebuGfhRz4sQ1AhrRGiCY5hEy0xZhJmjbg_9v_AO3Lnrg</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Barnabas, Georgina D.</creator><creator>Bahar-Shany, Keren</creator><creator>Sapoznik, Stav</creator><creator>Helpman, Limor</creator><creator>Kadan, Yfat</creator><creator>Beiner, Mario</creator><creator>Weitzner, Omer</creator><creator>Arbib, Nissim</creator><creator>Korach, Jacob</creator><creator>Perri, Tamar</creator><creator>Katz, Guy</creator><creator>Blecher, Anna</creator><creator>Brandt, Benny</creator><creator>Friedman, Eitan</creator><creator>Stockheim, David</creator><creator>Jakobson-Setton, Ariella</creator><creator>Eitan, Ram</creator><creator>Armon, Shunit</creator><creator>Brand, Hadar</creator><creator>Zadok, Oranit</creator><creator>Aviel-Ronen, Sarit</creator><creator>Harel, Michal</creator><creator>Geiger, Tamar</creator><creator>Levanon, Keren</creator><general>Elsevier Inc</general><general>The American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190501</creationdate><title>Microvesicle Proteomic Profiling of Uterine Liquid Biopsy for Ovarian Cancer Early Detection</title><author>Barnabas, Georgina D. ; Bahar-Shany, Keren ; Sapoznik, Stav ; Helpman, Limor ; Kadan, Yfat ; Beiner, Mario ; Weitzner, Omer ; Arbib, Nissim ; Korach, Jacob ; Perri, Tamar ; Katz, Guy ; Blecher, Anna ; Brandt, Benny ; Friedman, Eitan ; Stockheim, David ; Jakobson-Setton, Ariella ; Eitan, Ram ; Armon, Shunit ; Brand, Hadar ; Zadok, Oranit ; Aviel-Ronen, Sarit ; Harel, Michal ; Geiger, Tamar ; Levanon, Keren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-eb4ebe78508e777fc9b80b1ed8fa49223fe218f1c22f55f9b7a42d2ba5cbf8c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biofluids</topic><topic>Biomarker: Diagnostic</topic><topic>Cancer biomarker(s)</topic><topic>Cell-Derived Microparticles - metabolism</topic><topic>Early Detection of Cancer</topic><topic>Female</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humans</topic><topic>Liquid Biopsy</topic><topic>Mass Spectrometry</topic><topic>Neoplasm Grading</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Ovarian cancer</topic><topic>Ovarian Neoplasms - diagnosis</topic><topic>Ovarian Neoplasms - genetics</topic><topic>Ovarian Neoplasms - pathology</topic><topic>Proteomics - methods</topic><topic>Reproducibility of Results</topic><topic>Uterus - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnabas, Georgina D.</creatorcontrib><creatorcontrib>Bahar-Shany, Keren</creatorcontrib><creatorcontrib>Sapoznik, Stav</creatorcontrib><creatorcontrib>Helpman, Limor</creatorcontrib><creatorcontrib>Kadan, Yfat</creatorcontrib><creatorcontrib>Beiner, Mario</creatorcontrib><creatorcontrib>Weitzner, Omer</creatorcontrib><creatorcontrib>Arbib, Nissim</creatorcontrib><creatorcontrib>Korach, Jacob</creatorcontrib><creatorcontrib>Perri, Tamar</creatorcontrib><creatorcontrib>Katz, Guy</creatorcontrib><creatorcontrib>Blecher, Anna</creatorcontrib><creatorcontrib>Brandt, Benny</creatorcontrib><creatorcontrib>Friedman, Eitan</creatorcontrib><creatorcontrib>Stockheim, David</creatorcontrib><creatorcontrib>Jakobson-Setton, Ariella</creatorcontrib><creatorcontrib>Eitan, Ram</creatorcontrib><creatorcontrib>Armon, Shunit</creatorcontrib><creatorcontrib>Brand, Hadar</creatorcontrib><creatorcontrib>Zadok, Oranit</creatorcontrib><creatorcontrib>Aviel-Ronen, Sarit</creatorcontrib><creatorcontrib>Harel, Michal</creatorcontrib><creatorcontrib>Geiger, Tamar</creatorcontrib><creatorcontrib>Levanon, Keren</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular &amp; cellular proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnabas, Georgina D.</au><au>Bahar-Shany, Keren</au><au>Sapoznik, Stav</au><au>Helpman, Limor</au><au>Kadan, Yfat</au><au>Beiner, Mario</au><au>Weitzner, Omer</au><au>Arbib, Nissim</au><au>Korach, Jacob</au><au>Perri, Tamar</au><au>Katz, Guy</au><au>Blecher, Anna</au><au>Brandt, Benny</au><au>Friedman, Eitan</au><au>Stockheim, David</au><au>Jakobson-Setton, Ariella</au><au>Eitan, Ram</au><au>Armon, Shunit</au><au>Brand, Hadar</au><au>Zadok, Oranit</au><au>Aviel-Ronen, Sarit</au><au>Harel, Michal</au><au>Geiger, Tamar</au><au>Levanon, Keren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microvesicle Proteomic Profiling of Uterine Liquid Biopsy for Ovarian Cancer Early Detection</atitle><jtitle>Molecular &amp; cellular proteomics</jtitle><addtitle>Mol Cell Proteomics</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>18</volume><issue>5</issue><spage>865</spage><epage>875</epage><pages>865-875</pages><issn>1535-9476</issn><eissn>1535-9484</eissn><abstract>High-grade ovarian cancer accounts for higher mortality rates because of ineffective biomarkers for early diagnosis. Deep proteome profiling of the microvesicles from a total of 187 liquid biopsies of Utero-tubal Lavage, combined with support vector machine algorithms, extracted a 9-protein classifier with high accuracy. The signature predicted all the early stage lesions, and outperformed the known markers CA125 and HE4 with 70‥ sensitivity and 76.2‥ specificity. Our study reveals UtL-microvesicle proteomics as the potential biomarker source for early diagnosis of HGOC. [Display omitted] Highlights •Microvesicle proteomics of 187 utero-tubal lavage samples for early diagnosis of HGOC.•Machine learning-based classification of a 9-protein signature with high predictive power.•Signature has 70‥ sensitivity and 76.2‥ specificity, predicting stage I lesions. High-grade ovarian cancer (HGOC) is the leading cause of mortality from gynecological malignancies, because of diagnosis at a metastatic stage. Current screening options fail to improve mortality because of the absence of early-stage-specific biomarkers. We postulated that a liquid biopsy, such as utero-tubal lavage (UtL), may identify localized lesions better than systemic approaches of serum/plasma analysis. Further, while mutation-based assays are challenged by the rarity of tumor DNA within nonmutated DNA, analyzing the proteomic profile, is expected to enable earlier detection, as it reveals perturbations in both the tumor as well as in its microenvironment. To attain deep proteomic coverage and overcome the high dynamic range of this body fluid, we applied our method for microvesicle proteomics to the UtL samples. Liquid biopsies from HGOC patients (n = 49) and controls (n = 127) were divided into a discovery and validation sets. Data-dependent analysis of the samples on the Q-Exactive mass spectrometer provided depth of 8578 UtL proteins in total, and on average ∼3000 proteins per sample. We used support vector machine algorithms for sample classification, and crossed three feature-selection algorithms, to construct and validate a 9-protein classifier with 70% sensitivity and 76.2% specificity. The signature correctly identified all Stage I lesions. These results demonstrate the potential power of microvesicle-based proteomic biomarkers for early cancer diagnosis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30760538</pmid><doi>10.1074/mcp.RA119.001362</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-9476
ispartof Molecular & cellular proteomics, 2019-05, Vol.18 (5), p.865-875
issn 1535-9476
1535-9484
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6495259
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biofluids
Biomarker: Diagnostic
Cancer biomarker(s)
Cell-Derived Microparticles - metabolism
Early Detection of Cancer
Female
Gene Expression Regulation, Neoplastic
Humans
Liquid Biopsy
Mass Spectrometry
Neoplasm Grading
Neoplasm Proteins - metabolism
Ovarian cancer
Ovarian Neoplasms - diagnosis
Ovarian Neoplasms - genetics
Ovarian Neoplasms - pathology
Proteomics - methods
Reproducibility of Results
Uterus - pathology
title Microvesicle Proteomic Profiling of Uterine Liquid Biopsy for Ovarian Cancer Early Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microvesicle%20Proteomic%20Profiling%20of%20Uterine%20Liquid%20Biopsy%20for%20Ovarian%20Cancer%20Early%20Detection&rft.jtitle=Molecular%20&%20cellular%20proteomics&rft.au=Barnabas,%20Georgina%20D.&rft.date=2019-05-01&rft.volume=18&rft.issue=5&rft.spage=865&rft.epage=875&rft.pages=865-875&rft.issn=1535-9476&rft.eissn=1535-9484&rft_id=info:doi/10.1074/mcp.RA119.001362&rft_dat=%3Cproquest_pubme%3E2219011960%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2219011960&rft_id=info:pmid/30760538&rft_els_id=S1535947620315991&rfr_iscdi=true