R406 elicits anti-Warburg effect via Syk-dependent and -independent mechanisms to trigger apoptosis in glioma stem cells

Given that glioma stem cells (GSCs) play a critical role in the initiation and chemoresistance in glioblastoma multiforme (GBM), targeting GSCs is an attractive strategy to treat GBM. Utilizing an anti-cancer compound library, we identified R406, the active metabolite of a FDA-approved Syk inhibitor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2019-05, Vol.10 (5), p.358, Article 358
Hauptverfasser: Sun, Shuxin, Xue, Dongdong, Chen, Zhijie, Ou-yang, Ying, Zhang, Ji, Mai, Jialuo, Gu, Jiayv, Lu, Wanjun, Liu, Xincheng, Liu, Wenfeng, Sheng, Longxiang, Lu, Bingzheng, Lin, Yuan, Xing, Fan, Chen, Zhongping, Mou, Yonggao, Yan, Guangmei, Zhu, Wenbo, Sai, Ke
Format: Artikel
Sprache:eng
Schlagworte:
13
82
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 358
container_title Cell death & disease
container_volume 10
creator Sun, Shuxin
Xue, Dongdong
Chen, Zhijie
Ou-yang, Ying
Zhang, Ji
Mai, Jialuo
Gu, Jiayv
Lu, Wanjun
Liu, Xincheng
Liu, Wenfeng
Sheng, Longxiang
Lu, Bingzheng
Lin, Yuan
Xing, Fan
Chen, Zhongping
Mou, Yonggao
Yan, Guangmei
Zhu, Wenbo
Sai, Ke
description Given that glioma stem cells (GSCs) play a critical role in the initiation and chemoresistance in glioblastoma multiforme (GBM), targeting GSCs is an attractive strategy to treat GBM. Utilizing an anti-cancer compound library, we identified R406, the active metabolite of a FDA-approved Syk inhibitor for immune thrombocytopenia (ITP), with remarkable cytotoxicity against GSCs but not normal neural stem cells. R406 significantly inhibited neurosphere formation and triggered apoptosis in GSCs. R406 induced a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) and subsequently production of excess ROS in GSCs. R406 also diminished tumor growth and efficiently sensitized gliomas to temozolomide in GSC-initiating xenograft mouse models. Mechanistically, the anti-GSC effect of R406 was due to the disruption of Syk/PI3K signaling in Syk-positive GSCs and PI3K/Akt pathway in Syk-negative GSCs respectively. Overall, these findings not only identify R406 as a promising GSC-targeting agent but also reveal the important role of Syk and PI3K pathways in the regulation of energy metabolism in GSCs.
doi_str_mv 10.1038/s41419-019-1587-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6494878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2218268147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-f6933605acfb37b86ffaefece4b8962aa144372a69dcb17d6cab5170b4522f873</originalsourceid><addsrcrecordid>eNp1UU1LHTEUDUWpou8HdFMCXafmazKZTaGIrcKDQlVchkwmGWNnkjHJk_rvzeNZPxYNXBJyzz3ncA8Anwj-SjCTJ5kTTjqEa5FGtgh_AIcUc4K4lN3em_cBWOV8h-thDNNGfAQHjGDOGtkdgr-_ORbQTt74kqEOxaMbnfpNGqF1zpoCH7yGl49_0GAXGwYbSkUNEPnw-jFbc6uDz3OGJcKS_DjaBPUSlxKzz9AHOE4-zhrmYmdo7DTlY7Dv9JTt6vk-Atc_zq5Oz9H618-L0-9rZHiLC3KiY0zgRhvXs7aXwjltqy_Le9kJqjXhnLVUi24wPWkHYXTfkBb3vKHUyZYdgW873mXTz3Yw1W_Sk1qSn3V6VFF79b4T_K0a44MSvOOylZXgyzNBivcbm4u6i5sUqmdFKZFUSMK3MmSHMinmnKx7USBYbfNSu7xUzUtt81K4znx-a-1l4l86FUB3gFxboe70Vfr_rE8lJaLN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218268147</pqid></control><display><type>article</type><title>R406 elicits anti-Warburg effect via Syk-dependent and -independent mechanisms to trigger apoptosis in glioma stem cells</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Sun, Shuxin ; Xue, Dongdong ; Chen, Zhijie ; Ou-yang, Ying ; Zhang, Ji ; Mai, Jialuo ; Gu, Jiayv ; Lu, Wanjun ; Liu, Xincheng ; Liu, Wenfeng ; Sheng, Longxiang ; Lu, Bingzheng ; Lin, Yuan ; Xing, Fan ; Chen, Zhongping ; Mou, Yonggao ; Yan, Guangmei ; Zhu, Wenbo ; Sai, Ke</creator><creatorcontrib>Sun, Shuxin ; Xue, Dongdong ; Chen, Zhijie ; Ou-yang, Ying ; Zhang, Ji ; Mai, Jialuo ; Gu, Jiayv ; Lu, Wanjun ; Liu, Xincheng ; Liu, Wenfeng ; Sheng, Longxiang ; Lu, Bingzheng ; Lin, Yuan ; Xing, Fan ; Chen, Zhongping ; Mou, Yonggao ; Yan, Guangmei ; Zhu, Wenbo ; Sai, Ke</creatorcontrib><description>Given that glioma stem cells (GSCs) play a critical role in the initiation and chemoresistance in glioblastoma multiforme (GBM), targeting GSCs is an attractive strategy to treat GBM. Utilizing an anti-cancer compound library, we identified R406, the active metabolite of a FDA-approved Syk inhibitor for immune thrombocytopenia (ITP), with remarkable cytotoxicity against GSCs but not normal neural stem cells. R406 significantly inhibited neurosphere formation and triggered apoptosis in GSCs. R406 induced a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) and subsequently production of excess ROS in GSCs. R406 also diminished tumor growth and efficiently sensitized gliomas to temozolomide in GSC-initiating xenograft mouse models. Mechanistically, the anti-GSC effect of R406 was due to the disruption of Syk/PI3K signaling in Syk-positive GSCs and PI3K/Akt pathway in Syk-negative GSCs respectively. Overall, these findings not only identify R406 as a promising GSC-targeting agent but also reveal the important role of Syk and PI3K pathways in the regulation of energy metabolism in GSCs.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-019-1587-0</identifier><identifier>PMID: 31043589</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>1-Phosphatidylinositol 3-kinase ; 13 ; 13/100 ; 38/89 ; 631/154/555 ; 631/67/1922 ; 64/60 ; 82 ; 96/2 ; 96/34 ; AKT protein ; Animal models ; Animals ; Antibodies ; Antineoplastic Agents - pharmacology ; Apoptosis ; Apoptosis - drug effects ; Biochemistry ; Biomedical and Life Sciences ; Brain Neoplasms - drug therapy ; Brain Neoplasms - genetics ; Brain Neoplasms - mortality ; Brain Neoplasms - pathology ; Cell Adhesion - drug effects ; Cell Biology ; Cell Culture ; Chemoresistance ; Cytotoxicity ; Drug Resistance, Neoplasm - drug effects ; Drug Resistance, Neoplasm - genetics ; Energy metabolism ; Female ; Gene Expression Regulation, Neoplastic ; Glioblastoma ; Glioblastoma - drug therapy ; Glioblastoma - genetics ; Glioblastoma - mortality ; Glioblastoma - pathology ; Glioma ; Glioma cells ; Glycolysis ; Glycolysis - drug effects ; Glycolysis - genetics ; Humans ; Idiopathic thrombocytopenic purpura ; Immunology ; Life Sciences ; Mice, Nude ; Neoplastic Stem Cells ; Neural stem cells ; Oxazines - pharmacology ; Oxidative phosphorylation ; Oxidative Phosphorylation - drug effects ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Protein Kinase Inhibitors - pharmacology ; Proto-Oncogene Proteins c-akt - antagonists &amp; inhibitors ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; Pyridines - pharmacology ; Reactive oxygen species ; Signal Transduction ; Stem cell transplantation ; Stem cells ; Survival Analysis ; Syk Kinase - antagonists &amp; inhibitors ; Syk Kinase - genetics ; Syk Kinase - metabolism ; Syk protein ; Temozolomide ; Temozolomide - pharmacology ; Thrombocytopenia ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Cell death &amp; disease, 2019-05, Vol.10 (5), p.358, Article 358</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-f6933605acfb37b86ffaefece4b8962aa144372a69dcb17d6cab5170b4522f873</citedby><cites>FETCH-LOGICAL-c470t-f6933605acfb37b86ffaefece4b8962aa144372a69dcb17d6cab5170b4522f873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494878/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494878/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31043589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Shuxin</creatorcontrib><creatorcontrib>Xue, Dongdong</creatorcontrib><creatorcontrib>Chen, Zhijie</creatorcontrib><creatorcontrib>Ou-yang, Ying</creatorcontrib><creatorcontrib>Zhang, Ji</creatorcontrib><creatorcontrib>Mai, Jialuo</creatorcontrib><creatorcontrib>Gu, Jiayv</creatorcontrib><creatorcontrib>Lu, Wanjun</creatorcontrib><creatorcontrib>Liu, Xincheng</creatorcontrib><creatorcontrib>Liu, Wenfeng</creatorcontrib><creatorcontrib>Sheng, Longxiang</creatorcontrib><creatorcontrib>Lu, Bingzheng</creatorcontrib><creatorcontrib>Lin, Yuan</creatorcontrib><creatorcontrib>Xing, Fan</creatorcontrib><creatorcontrib>Chen, Zhongping</creatorcontrib><creatorcontrib>Mou, Yonggao</creatorcontrib><creatorcontrib>Yan, Guangmei</creatorcontrib><creatorcontrib>Zhu, Wenbo</creatorcontrib><creatorcontrib>Sai, Ke</creatorcontrib><title>R406 elicits anti-Warburg effect via Syk-dependent and -independent mechanisms to trigger apoptosis in glioma stem cells</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Given that glioma stem cells (GSCs) play a critical role in the initiation and chemoresistance in glioblastoma multiforme (GBM), targeting GSCs is an attractive strategy to treat GBM. Utilizing an anti-cancer compound library, we identified R406, the active metabolite of a FDA-approved Syk inhibitor for immune thrombocytopenia (ITP), with remarkable cytotoxicity against GSCs but not normal neural stem cells. R406 significantly inhibited neurosphere formation and triggered apoptosis in GSCs. R406 induced a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) and subsequently production of excess ROS in GSCs. R406 also diminished tumor growth and efficiently sensitized gliomas to temozolomide in GSC-initiating xenograft mouse models. Mechanistically, the anti-GSC effect of R406 was due to the disruption of Syk/PI3K signaling in Syk-positive GSCs and PI3K/Akt pathway in Syk-negative GSCs respectively. Overall, these findings not only identify R406 as a promising GSC-targeting agent but also reveal the important role of Syk and PI3K pathways in the regulation of energy metabolism in GSCs.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>13</subject><subject>13/100</subject><subject>38/89</subject><subject>631/154/555</subject><subject>631/67/1922</subject><subject>64/60</subject><subject>82</subject><subject>96/2</subject><subject>96/34</subject><subject>AKT protein</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - mortality</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Chemoresistance</subject><subject>Cytotoxicity</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Energy metabolism</subject><subject>Female</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Glioblastoma</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - mortality</subject><subject>Glioblastoma - pathology</subject><subject>Glioma</subject><subject>Glioma cells</subject><subject>Glycolysis</subject><subject>Glycolysis - drug effects</subject><subject>Glycolysis - genetics</subject><subject>Humans</subject><subject>Idiopathic thrombocytopenic purpura</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>Mice, Nude</subject><subject>Neoplastic Stem Cells</subject><subject>Neural stem cells</subject><subject>Oxazines - pharmacology</subject><subject>Oxidative phosphorylation</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Proto-Oncogene Proteins c-akt - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Pyridines - pharmacology</subject><subject>Reactive oxygen species</subject><subject>Signal Transduction</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Survival Analysis</subject><subject>Syk Kinase - antagonists &amp; inhibitors</subject><subject>Syk Kinase - genetics</subject><subject>Syk Kinase - metabolism</subject><subject>Syk protein</subject><subject>Temozolomide</subject><subject>Temozolomide - pharmacology</subject><subject>Thrombocytopenia</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1UU1LHTEUDUWpou8HdFMCXafmazKZTaGIrcKDQlVchkwmGWNnkjHJk_rvzeNZPxYNXBJyzz3ncA8Anwj-SjCTJ5kTTjqEa5FGtgh_AIcUc4K4lN3em_cBWOV8h-thDNNGfAQHjGDOGtkdgr-_ORbQTt74kqEOxaMbnfpNGqF1zpoCH7yGl49_0GAXGwYbSkUNEPnw-jFbc6uDz3OGJcKS_DjaBPUSlxKzz9AHOE4-zhrmYmdo7DTlY7Dv9JTt6vk-Atc_zq5Oz9H618-L0-9rZHiLC3KiY0zgRhvXs7aXwjltqy_Le9kJqjXhnLVUi24wPWkHYXTfkBb3vKHUyZYdgW873mXTz3Yw1W_Sk1qSn3V6VFF79b4T_K0a44MSvOOylZXgyzNBivcbm4u6i5sUqmdFKZFUSMK3MmSHMinmnKx7USBYbfNSu7xUzUtt81K4znx-a-1l4l86FUB3gFxboe70Vfr_rE8lJaLN</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Sun, Shuxin</creator><creator>Xue, Dongdong</creator><creator>Chen, Zhijie</creator><creator>Ou-yang, Ying</creator><creator>Zhang, Ji</creator><creator>Mai, Jialuo</creator><creator>Gu, Jiayv</creator><creator>Lu, Wanjun</creator><creator>Liu, Xincheng</creator><creator>Liu, Wenfeng</creator><creator>Sheng, Longxiang</creator><creator>Lu, Bingzheng</creator><creator>Lin, Yuan</creator><creator>Xing, Fan</creator><creator>Chen, Zhongping</creator><creator>Mou, Yonggao</creator><creator>Yan, Guangmei</creator><creator>Zhu, Wenbo</creator><creator>Sai, Ke</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20190501</creationdate><title>R406 elicits anti-Warburg effect via Syk-dependent and -independent mechanisms to trigger apoptosis in glioma stem cells</title><author>Sun, Shuxin ; Xue, Dongdong ; Chen, Zhijie ; Ou-yang, Ying ; Zhang, Ji ; Mai, Jialuo ; Gu, Jiayv ; Lu, Wanjun ; Liu, Xincheng ; Liu, Wenfeng ; Sheng, Longxiang ; Lu, Bingzheng ; Lin, Yuan ; Xing, Fan ; Chen, Zhongping ; Mou, Yonggao ; Yan, Guangmei ; Zhu, Wenbo ; Sai, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-f6933605acfb37b86ffaefece4b8962aa144372a69dcb17d6cab5170b4522f873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>13</topic><topic>13/100</topic><topic>38/89</topic><topic>631/154/555</topic><topic>631/67/1922</topic><topic>64/60</topic><topic>82</topic><topic>96/2</topic><topic>96/34</topic><topic>AKT protein</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - mortality</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Chemoresistance</topic><topic>Cytotoxicity</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Energy metabolism</topic><topic>Female</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Glioblastoma</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - mortality</topic><topic>Glioblastoma - pathology</topic><topic>Glioma</topic><topic>Glioma cells</topic><topic>Glycolysis</topic><topic>Glycolysis - drug effects</topic><topic>Glycolysis - genetics</topic><topic>Humans</topic><topic>Idiopathic thrombocytopenic purpura</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>Mice, Nude</topic><topic>Neoplastic Stem Cells</topic><topic>Neural stem cells</topic><topic>Oxazines - pharmacology</topic><topic>Oxidative phosphorylation</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Proto-Oncogene Proteins c-akt - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Pyridines - pharmacology</topic><topic>Reactive oxygen species</topic><topic>Signal Transduction</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Survival Analysis</topic><topic>Syk Kinase - antagonists &amp; inhibitors</topic><topic>Syk Kinase - genetics</topic><topic>Syk Kinase - metabolism</topic><topic>Syk protein</topic><topic>Temozolomide</topic><topic>Temozolomide - pharmacology</topic><topic>Thrombocytopenia</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shuxin</creatorcontrib><creatorcontrib>Xue, Dongdong</creatorcontrib><creatorcontrib>Chen, Zhijie</creatorcontrib><creatorcontrib>Ou-yang, Ying</creatorcontrib><creatorcontrib>Zhang, Ji</creatorcontrib><creatorcontrib>Mai, Jialuo</creatorcontrib><creatorcontrib>Gu, Jiayv</creatorcontrib><creatorcontrib>Lu, Wanjun</creatorcontrib><creatorcontrib>Liu, Xincheng</creatorcontrib><creatorcontrib>Liu, Wenfeng</creatorcontrib><creatorcontrib>Sheng, Longxiang</creatorcontrib><creatorcontrib>Lu, Bingzheng</creatorcontrib><creatorcontrib>Lin, Yuan</creatorcontrib><creatorcontrib>Xing, Fan</creatorcontrib><creatorcontrib>Chen, Zhongping</creatorcontrib><creatorcontrib>Mou, Yonggao</creatorcontrib><creatorcontrib>Yan, Guangmei</creatorcontrib><creatorcontrib>Zhu, Wenbo</creatorcontrib><creatorcontrib>Sai, Ke</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shuxin</au><au>Xue, Dongdong</au><au>Chen, Zhijie</au><au>Ou-yang, Ying</au><au>Zhang, Ji</au><au>Mai, Jialuo</au><au>Gu, Jiayv</au><au>Lu, Wanjun</au><au>Liu, Xincheng</au><au>Liu, Wenfeng</au><au>Sheng, Longxiang</au><au>Lu, Bingzheng</au><au>Lin, Yuan</au><au>Xing, Fan</au><au>Chen, Zhongping</au><au>Mou, Yonggao</au><au>Yan, Guangmei</au><au>Zhu, Wenbo</au><au>Sai, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>R406 elicits anti-Warburg effect via Syk-dependent and -independent mechanisms to trigger apoptosis in glioma stem cells</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>10</volume><issue>5</issue><spage>358</spage><pages>358-</pages><artnum>358</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Given that glioma stem cells (GSCs) play a critical role in the initiation and chemoresistance in glioblastoma multiforme (GBM), targeting GSCs is an attractive strategy to treat GBM. Utilizing an anti-cancer compound library, we identified R406, the active metabolite of a FDA-approved Syk inhibitor for immune thrombocytopenia (ITP), with remarkable cytotoxicity against GSCs but not normal neural stem cells. R406 significantly inhibited neurosphere formation and triggered apoptosis in GSCs. R406 induced a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) and subsequently production of excess ROS in GSCs. R406 also diminished tumor growth and efficiently sensitized gliomas to temozolomide in GSC-initiating xenograft mouse models. Mechanistically, the anti-GSC effect of R406 was due to the disruption of Syk/PI3K signaling in Syk-positive GSCs and PI3K/Akt pathway in Syk-negative GSCs respectively. Overall, these findings not only identify R406 as a promising GSC-targeting agent but also reveal the important role of Syk and PI3K pathways in the regulation of energy metabolism in GSCs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31043589</pmid><doi>10.1038/s41419-019-1587-0</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2019-05, Vol.10 (5), p.358, Article 358
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6494878
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA Free Journals
subjects 1-Phosphatidylinositol 3-kinase
13
13/100
38/89
631/154/555
631/67/1922
64/60
82
96/2
96/34
AKT protein
Animal models
Animals
Antibodies
Antineoplastic Agents - pharmacology
Apoptosis
Apoptosis - drug effects
Biochemistry
Biomedical and Life Sciences
Brain Neoplasms - drug therapy
Brain Neoplasms - genetics
Brain Neoplasms - mortality
Brain Neoplasms - pathology
Cell Adhesion - drug effects
Cell Biology
Cell Culture
Chemoresistance
Cytotoxicity
Drug Resistance, Neoplasm - drug effects
Drug Resistance, Neoplasm - genetics
Energy metabolism
Female
Gene Expression Regulation, Neoplastic
Glioblastoma
Glioblastoma - drug therapy
Glioblastoma - genetics
Glioblastoma - mortality
Glioblastoma - pathology
Glioma
Glioma cells
Glycolysis
Glycolysis - drug effects
Glycolysis - genetics
Humans
Idiopathic thrombocytopenic purpura
Immunology
Life Sciences
Mice, Nude
Neoplastic Stem Cells
Neural stem cells
Oxazines - pharmacology
Oxidative phosphorylation
Oxidative Phosphorylation - drug effects
Phosphatidylinositol 3-Kinases - genetics
Phosphatidylinositol 3-Kinases - metabolism
Phosphorylation
Protein Kinase Inhibitors - pharmacology
Proto-Oncogene Proteins c-akt - antagonists & inhibitors
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
Pyridines - pharmacology
Reactive oxygen species
Signal Transduction
Stem cell transplantation
Stem cells
Survival Analysis
Syk Kinase - antagonists & inhibitors
Syk Kinase - genetics
Syk Kinase - metabolism
Syk protein
Temozolomide
Temozolomide - pharmacology
Thrombocytopenia
Xenograft Model Antitumor Assays
Xenografts
title R406 elicits anti-Warburg effect via Syk-dependent and -independent mechanisms to trigger apoptosis in glioma stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=R406%20elicits%20anti-Warburg%20effect%20via%20Syk-dependent%20and%20-independent%20mechanisms%20to%20trigger%20apoptosis%20in%20glioma%20stem%20cells&rft.jtitle=Cell%20death%20&%20disease&rft.au=Sun,%20Shuxin&rft.date=2019-05-01&rft.volume=10&rft.issue=5&rft.spage=358&rft.pages=358-&rft.artnum=358&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-019-1587-0&rft_dat=%3Cproquest_pubme%3E2218268147%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218268147&rft_id=info:pmid/31043589&rfr_iscdi=true