Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction
In recent years, some convolutional neural networks (CNNs) have been proposed to segment sub-cortical brain structures from magnetic resonance images (MRIs). Although these methods provide accurate segmentation, there is a reproducibility issue regarding segmenting MRI volumes from different image d...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-05, Vol.9 (1), p.6742-6742, Article 6742 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6742 |
---|---|
container_issue | 1 |
container_start_page | 6742 |
container_title | Scientific reports |
container_volume | 9 |
creator | Kushibar, Kaisar Valverde, Sergi González-Villà, Sandra Bernal, Jose Cabezas, Mariano Oliver, Arnau Lladó, Xavier |
description | In recent years, some convolutional neural networks (CNNs) have been proposed to segment sub-cortical brain structures from magnetic resonance images (MRIs). Although these methods provide accurate segmentation, there is a reproducibility issue regarding segmenting MRI volumes from different image domains – e.g., differences in protocol, scanner, and intensity profile. Thus, the network must be retrained from scratch to perform similarly in different imaging domains, limiting the applicability of such methods in clinical settings. In this paper, we employ the transfer learning strategy to solve the domain shift problem. We reduced the number of training images by leveraging the knowledge obtained by a pretrained network, and improved the training speed by reducing the number of trainable parameters of the CNN. We tested our method on two publicly available datasets – MICCAI 2012 and IBSR – and compared them with a commonly used approach: FIRST. Our method showed similar results to those obtained by a fully trained CNN, and our method used a remarkably smaller number of images from the target domain. Moreover, training the network with only one image from MICCAI 2012 and three images from IBSR datasets was sufficient to significantly outperform FIRST with (p |
doi_str_mv | 10.1038/s41598-019-43299-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6494835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2218800533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-ca8850cf2c56b006d107ded642d2e6c4983036de7995ca8a9723c4cbb51afedd3</originalsourceid><addsrcrecordid>eNp9kctuEzEUhi0EolXoC7BAI7FhM-DbTOwNUigUKhWxCF1bHvtM6mrGDr4U0aev04RSWOCNLZ_v_OfyI_SS4LcEM_EucdJJ0WIiW86olO3tE3RMMe9ayih9-uh9hE5Susb1dFRyIp-jI0YwZ70QxyiuyxbijUtgm49h1s43K6u3WWcXfDOG2KxKrv_ZmWZdhtaEWJ96aj7EHbvOsZhcIjRr2MzgD3k_Xb5qvjrv5kpeJojNuc8QtdlFX6Bno54SnBzuBbo8-_T99Et78e3z-enqojV8yXNrtBAdNiM1XT9g3FuClxZsz6ml0BsuBcOst7CUsquslkvKDDfD0BE9grVsgd7vdbdlmMGa2l3Uk9rG2lX8pYJ26u-Id1dqE25UzyUXrKsCbw4CMfwokLKaXTIwTdpDKElRSoSsZesuF-j1P-h1KNHX8e4pUXfPWKXonjIxpBRhfGiGYLVzVe1dVdVVde-quq1Jrx6P8ZDy28MKsD2QashvIP6p_R_ZO9OjsMY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218800533</pqid></control><display><type>article</type><title>Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Kushibar, Kaisar ; Valverde, Sergi ; González-Villà, Sandra ; Bernal, Jose ; Cabezas, Mariano ; Oliver, Arnau ; Lladó, Xavier</creator><creatorcontrib>Kushibar, Kaisar ; Valverde, Sergi ; González-Villà, Sandra ; Bernal, Jose ; Cabezas, Mariano ; Oliver, Arnau ; Lladó, Xavier</creatorcontrib><description>In recent years, some convolutional neural networks (CNNs) have been proposed to segment sub-cortical brain structures from magnetic resonance images (MRIs). Although these methods provide accurate segmentation, there is a reproducibility issue regarding segmenting MRI volumes from different image domains – e.g., differences in protocol, scanner, and intensity profile. Thus, the network must be retrained from scratch to perform similarly in different imaging domains, limiting the applicability of such methods in clinical settings. In this paper, we employ the transfer learning strategy to solve the domain shift problem. We reduced the number of training images by leveraging the knowledge obtained by a pretrained network, and improved the training speed by reducing the number of trainable parameters of the CNN. We tested our method on two publicly available datasets – MICCAI 2012 and IBSR – and compared them with a commonly used approach: FIRST. Our method showed similar results to those obtained by a fully trained CNN, and our method used a remarkably smaller number of images from the target domain. Moreover, training the network with only one image from MICCAI 2012 and three images from IBSR datasets was sufficient to significantly outperform FIRST with (p < 0.001) and (p < 0.05), respectively.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-43299-z</identifier><identifier>PMID: 31043688</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>59/57 ; 692/700/1421/1628 ; 692/700/1421/65 ; Adaptation ; Brain - diagnostic imaging ; Cortex ; Datasets ; Deep learning ; Humanities and Social Sciences ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Labeling ; Magnetic Resonance Imaging ; Medical research ; Methods ; multidisciplinary ; Neural networks ; Neural Networks, Computer ; Neuroimaging ; Reproducibility ; Scanners ; Science ; Science (multidisciplinary) ; Segmentation ; Transfer learning ; User-Computer Interface</subject><ispartof>Scientific reports, 2019-05, Vol.9 (1), p.6742-6742, Article 6742</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-ca8850cf2c56b006d107ded642d2e6c4983036de7995ca8a9723c4cbb51afedd3</citedby><cites>FETCH-LOGICAL-c474t-ca8850cf2c56b006d107ded642d2e6c4983036de7995ca8a9723c4cbb51afedd3</cites><orcidid>0000-0002-5393-1664 ; 0000-0003-3167-5134 ; 0000-0001-7507-5208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494835/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494835/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31043688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kushibar, Kaisar</creatorcontrib><creatorcontrib>Valverde, Sergi</creatorcontrib><creatorcontrib>González-Villà, Sandra</creatorcontrib><creatorcontrib>Bernal, Jose</creatorcontrib><creatorcontrib>Cabezas, Mariano</creatorcontrib><creatorcontrib>Oliver, Arnau</creatorcontrib><creatorcontrib>Lladó, Xavier</creatorcontrib><title>Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In recent years, some convolutional neural networks (CNNs) have been proposed to segment sub-cortical brain structures from magnetic resonance images (MRIs). Although these methods provide accurate segmentation, there is a reproducibility issue regarding segmenting MRI volumes from different image domains – e.g., differences in protocol, scanner, and intensity profile. Thus, the network must be retrained from scratch to perform similarly in different imaging domains, limiting the applicability of such methods in clinical settings. In this paper, we employ the transfer learning strategy to solve the domain shift problem. We reduced the number of training images by leveraging the knowledge obtained by a pretrained network, and improved the training speed by reducing the number of trainable parameters of the CNN. We tested our method on two publicly available datasets – MICCAI 2012 and IBSR – and compared them with a commonly used approach: FIRST. Our method showed similar results to those obtained by a fully trained CNN, and our method used a remarkably smaller number of images from the target domain. Moreover, training the network with only one image from MICCAI 2012 and three images from IBSR datasets was sufficient to significantly outperform FIRST with (p < 0.001) and (p < 0.05), respectively.</description><subject>59/57</subject><subject>692/700/1421/1628</subject><subject>692/700/1421/65</subject><subject>Adaptation</subject><subject>Brain - diagnostic imaging</subject><subject>Cortex</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Labeling</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical research</subject><subject>Methods</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neuroimaging</subject><subject>Reproducibility</subject><subject>Scanners</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Segmentation</subject><subject>Transfer learning</subject><subject>User-Computer Interface</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctuEzEUhi0EolXoC7BAI7FhM-DbTOwNUigUKhWxCF1bHvtM6mrGDr4U0aev04RSWOCNLZ_v_OfyI_SS4LcEM_EucdJJ0WIiW86olO3tE3RMMe9ayih9-uh9hE5Susb1dFRyIp-jI0YwZ70QxyiuyxbijUtgm49h1s43K6u3WWcXfDOG2KxKrv_ZmWZdhtaEWJ96aj7EHbvOsZhcIjRr2MzgD3k_Xb5qvjrv5kpeJojNuc8QtdlFX6Bno54SnBzuBbo8-_T99Et78e3z-enqojV8yXNrtBAdNiM1XT9g3FuClxZsz6ml0BsuBcOst7CUsquslkvKDDfD0BE9grVsgd7vdbdlmMGa2l3Uk9rG2lX8pYJ26u-Id1dqE25UzyUXrKsCbw4CMfwokLKaXTIwTdpDKElRSoSsZesuF-j1P-h1KNHX8e4pUXfPWKXonjIxpBRhfGiGYLVzVe1dVdVVde-quq1Jrx6P8ZDy28MKsD2QashvIP6p_R_ZO9OjsMY</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Kushibar, Kaisar</creator><creator>Valverde, Sergi</creator><creator>González-Villà, Sandra</creator><creator>Bernal, Jose</creator><creator>Cabezas, Mariano</creator><creator>Oliver, Arnau</creator><creator>Lladó, Xavier</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5393-1664</orcidid><orcidid>https://orcid.org/0000-0003-3167-5134</orcidid><orcidid>https://orcid.org/0000-0001-7507-5208</orcidid></search><sort><creationdate>20190501</creationdate><title>Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction</title><author>Kushibar, Kaisar ; Valverde, Sergi ; González-Villà, Sandra ; Bernal, Jose ; Cabezas, Mariano ; Oliver, Arnau ; Lladó, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-ca8850cf2c56b006d107ded642d2e6c4983036de7995ca8a9723c4cbb51afedd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>59/57</topic><topic>692/700/1421/1628</topic><topic>692/700/1421/65</topic><topic>Adaptation</topic><topic>Brain - diagnostic imaging</topic><topic>Cortex</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Labeling</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical research</topic><topic>Methods</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neuroimaging</topic><topic>Reproducibility</topic><topic>Scanners</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Segmentation</topic><topic>Transfer learning</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kushibar, Kaisar</creatorcontrib><creatorcontrib>Valverde, Sergi</creatorcontrib><creatorcontrib>González-Villà, Sandra</creatorcontrib><creatorcontrib>Bernal, Jose</creatorcontrib><creatorcontrib>Cabezas, Mariano</creatorcontrib><creatorcontrib>Oliver, Arnau</creatorcontrib><creatorcontrib>Lladó, Xavier</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kushibar, Kaisar</au><au>Valverde, Sergi</au><au>González-Villà, Sandra</au><au>Bernal, Jose</au><au>Cabezas, Mariano</au><au>Oliver, Arnau</au><au>Lladó, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>6742</spage><epage>6742</epage><pages>6742-6742</pages><artnum>6742</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In recent years, some convolutional neural networks (CNNs) have been proposed to segment sub-cortical brain structures from magnetic resonance images (MRIs). Although these methods provide accurate segmentation, there is a reproducibility issue regarding segmenting MRI volumes from different image domains – e.g., differences in protocol, scanner, and intensity profile. Thus, the network must be retrained from scratch to perform similarly in different imaging domains, limiting the applicability of such methods in clinical settings. In this paper, we employ the transfer learning strategy to solve the domain shift problem. We reduced the number of training images by leveraging the knowledge obtained by a pretrained network, and improved the training speed by reducing the number of trainable parameters of the CNN. We tested our method on two publicly available datasets – MICCAI 2012 and IBSR – and compared them with a commonly used approach: FIRST. Our method showed similar results to those obtained by a fully trained CNN, and our method used a remarkably smaller number of images from the target domain. Moreover, training the network with only one image from MICCAI 2012 and three images from IBSR datasets was sufficient to significantly outperform FIRST with (p < 0.001) and (p < 0.05), respectively.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31043688</pmid><doi>10.1038/s41598-019-43299-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5393-1664</orcidid><orcidid>https://orcid.org/0000-0003-3167-5134</orcidid><orcidid>https://orcid.org/0000-0001-7507-5208</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-05, Vol.9 (1), p.6742-6742, Article 6742 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6494835 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 59/57 692/700/1421/1628 692/700/1421/65 Adaptation Brain - diagnostic imaging Cortex Datasets Deep learning Humanities and Social Sciences Humans Image processing Image Processing, Computer-Assisted - methods Labeling Magnetic Resonance Imaging Medical research Methods multidisciplinary Neural networks Neural Networks, Computer Neuroimaging Reproducibility Scanners Science Science (multidisciplinary) Segmentation Transfer learning User-Computer Interface |
title | Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Domain%20Adaptation%20for%20Automatic%20Sub-cortical%20Brain%20Structure%20Segmentation%20with%20Minimal%20User%20Interaction&rft.jtitle=Scientific%20reports&rft.au=Kushibar,%20Kaisar&rft.date=2019-05-01&rft.volume=9&rft.issue=1&rft.spage=6742&rft.epage=6742&rft.pages=6742-6742&rft.artnum=6742&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-43299-z&rft_dat=%3Cproquest_pubme%3E2218800533%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218800533&rft_id=info:pmid/31043688&rfr_iscdi=true |