Hypoxia‐Triggered m‐Calpain Activation Evokes Endoplasmic Reticulum Stress and Neuropathogenesis in a Transgenic Mouse Model of Alzheimer's Disease
Summary Background Previous studies have demonstrated that endoplasmic reticulum (ER) stress is activated in Alzheimer's disease (AD) brains. ER stress–triggered unfolded protein response (UPR) leads to tau phosphorylation and neuronal death. Aims In this study, we tested the hypothesis that hy...
Gespeichert in:
Veröffentlicht in: | CNS neuroscience & therapeutics 2013-10, Vol.19 (10), p.820-833 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 833 |
---|---|
container_issue | 10 |
container_start_page | 820 |
container_title | CNS neuroscience & therapeutics |
container_volume | 19 |
creator | Wang, Chun‐Yan Xie, Jing‐Wei Wang, Tao Xu, Ye Cai, Jian‐Hui Wang, Xu Zhao, Bao‐Lu An, Li Wang, Zhan‐You |
description | Summary
Background
Previous studies have demonstrated that endoplasmic reticulum (ER) stress is activated in Alzheimer's disease (AD) brains. ER stress–triggered unfolded protein response (UPR) leads to tau phosphorylation and neuronal death.
Aims
In this study, we tested the hypothesis that hypoxia‐induced m‐calpain activation is involved in ER stress‐mediated AD pathogenesis.
Method
We employed a hypoxic exposure in APP/PS1 transgenic mice and SH‐SY5Y cells overexpressing human Swedish mutation APP (APPswe).
Results
We observed that hypoxia impaired spatial learning and memory in the APP/PS1 mouse. In the transgenic mouse brain, hypoxia increased the UPR, upregulated apoptotic signaling, enhanced the activation of calpain and glycogen synthase kinase‐3β (GSK3β), and increased tau hyperphosphorylation and β‐amyloid deposition. In APPswe cells, m‐calpain silencing reduced hypoxia‐induced cellular dysfunction and resulted in suppression of GSK3β activation, ER stress and tau hyperphosphorylation reduction as well as caspase pathway suppression.
Conclusion
These findings demonstrate that hypoxia‐induced abnormal calpain activation may increase ER stress‐induced apoptosis in AD pathogenesis. In contrast, a reduction in the expression of the m‐calpain isoform reduces ER stress‐linked apoptosis that is triggered by hypoxia. These findings suggest that hypoxia‐triggered m‐calpain activation is involved in ER stress‐mediated AD pathogenesis. m‐calpain is a potential target for AD therapeutics. |
doi_str_mv | 10.1111/cns.12151 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6493504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083450551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5721-eae8259874083596db715112f780cc8e8a8476b6877c3e8246f99d564f1369913</originalsourceid><addsrcrecordid>eNqNkstuEzEUhkcIREthwQsgSwgBi7TjGXtsb5CiNFCkUiQa1pbjOZO4eOzBngkNKx6BHe_Hk-A0IVwkJLzw9fN_fI7_LHuI82Oc2ol28RgXmOJb2SFmlI6oIOL2fl7mB9m9GK_yvCq44Hezg6LkXAgmDrNvZ-vOXxv1_cvXWTCLBQSoUZtWE2U7ZRwa696sVG-8Q9OV_wARTV3tO6tiazR6B73Rgx1adNkHiBEpV6MLGILvVL_0C3AQTURJR6FZUC6mnXTtjR8ipL4Gi3yDxvbzEkwL4WlEpyaCinA_u9MoG-HBbjzK3r-cziZno_O3r15PxucjTVmBR6CAF1RwRnJeUlHVc5bKgIuG8VxrDlxxwqp5xRnTZUJJ1QhR04o0uKyEwOVR9mKr2w3zFmoNrg_Kyi6YVoW19MrIP0-cWcqFX8mKiJLmJAk82wkE_3GA2MvWRA3WKgcpS4kJ5ZRggul_oCWnlSB0o_r4L_TKD8GlSmwoVuQ5Lniinm8pHXyMAZr9u3EuN86QyRnyxhmJffR7onvypxUS8GQHqKiVbdJvaRN_cYxxUd5U7GTLfTIW1v-OKCcXl9vQPwBCfdKd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437200128</pqid></control><display><type>article</type><title>Hypoxia‐Triggered m‐Calpain Activation Evokes Endoplasmic Reticulum Stress and Neuropathogenesis in a Transgenic Mouse Model of Alzheimer's Disease</title><source>Wiley-Blackwell Open Access Titles</source><creator>Wang, Chun‐Yan ; Xie, Jing‐Wei ; Wang, Tao ; Xu, Ye ; Cai, Jian‐Hui ; Wang, Xu ; Zhao, Bao‐Lu ; An, Li ; Wang, Zhan‐You</creator><creatorcontrib>Wang, Chun‐Yan ; Xie, Jing‐Wei ; Wang, Tao ; Xu, Ye ; Cai, Jian‐Hui ; Wang, Xu ; Zhao, Bao‐Lu ; An, Li ; Wang, Zhan‐You</creatorcontrib><description>Summary
Background
Previous studies have demonstrated that endoplasmic reticulum (ER) stress is activated in Alzheimer's disease (AD) brains. ER stress–triggered unfolded protein response (UPR) leads to tau phosphorylation and neuronal death.
Aims
In this study, we tested the hypothesis that hypoxia‐induced m‐calpain activation is involved in ER stress‐mediated AD pathogenesis.
Method
We employed a hypoxic exposure in APP/PS1 transgenic mice and SH‐SY5Y cells overexpressing human Swedish mutation APP (APPswe).
Results
We observed that hypoxia impaired spatial learning and memory in the APP/PS1 mouse. In the transgenic mouse brain, hypoxia increased the UPR, upregulated apoptotic signaling, enhanced the activation of calpain and glycogen synthase kinase‐3β (GSK3β), and increased tau hyperphosphorylation and β‐amyloid deposition. In APPswe cells, m‐calpain silencing reduced hypoxia‐induced cellular dysfunction and resulted in suppression of GSK3β activation, ER stress and tau hyperphosphorylation reduction as well as caspase pathway suppression.
Conclusion
These findings demonstrate that hypoxia‐induced abnormal calpain activation may increase ER stress‐induced apoptosis in AD pathogenesis. In contrast, a reduction in the expression of the m‐calpain isoform reduces ER stress‐linked apoptosis that is triggered by hypoxia. These findings suggest that hypoxia‐triggered m‐calpain activation is involved in ER stress‐mediated AD pathogenesis. m‐calpain is a potential target for AD therapeutics.</description><identifier>ISSN: 1755-5930</identifier><identifier>EISSN: 1755-5949</identifier><identifier>DOI: 10.1111/cns.12151</identifier><identifier>PMID: 23889979</identifier><language>eng</language><publisher>Oxford: Wiley-Blackwell</publisher><subject>Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Alzheimer's disease ; Amyloid beta-Protein Precursor - genetics ; Animals ; Apoptosis ; APP/PS1 transgenic mouse ; Biological and medical sciences ; Calpain ; Calpain - metabolism ; Cell Line, Tumor ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Disease Models, Animal ; Endoplasmic reticulum ; Endoplasmic Reticulum - genetics ; Endoplasmic Reticulum - pathology ; Endoplasmic Reticulum - physiology ; Endoplasmic reticulum stress ; Endoplasmic Reticulum Stress - physiology ; Female ; Glycogen synthase kinase 3 ; Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy ; Hippocampus - metabolism ; Hippocampus - pathology ; Humans ; Hypoxia ; Hypoxia - genetics ; Hypoxia - metabolism ; Hypoxia - pathology ; Kinases ; Maze Learning - physiology ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nervous system (semeiology, syndromes) ; Neurology ; Original ; Pathogenesis ; Presenilin-1 - genetics ; Random Allocation ; RNA interference ; Rodents ; Vascular diseases and vascular malformations of the nervous system</subject><ispartof>CNS neuroscience & therapeutics, 2013-10, Vol.19 (10), p.820-833</ispartof><rights>2013 John Wiley & Sons Ltd</rights><rights>2014 INIST-CNRS</rights><rights>2013 John Wiley & Sons Ltd.</rights><rights>Copyright © 2013 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5721-eae8259874083596db715112f780cc8e8a8476b6877c3e8246f99d564f1369913</citedby><cites>FETCH-LOGICAL-c5721-eae8259874083596db715112f780cc8e8a8476b6877c3e8246f99d564f1369913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493504/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493504/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcns.12151$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27789391$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23889979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chun‐Yan</creatorcontrib><creatorcontrib>Xie, Jing‐Wei</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Xu, Ye</creatorcontrib><creatorcontrib>Cai, Jian‐Hui</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhao, Bao‐Lu</creatorcontrib><creatorcontrib>An, Li</creatorcontrib><creatorcontrib>Wang, Zhan‐You</creatorcontrib><title>Hypoxia‐Triggered m‐Calpain Activation Evokes Endoplasmic Reticulum Stress and Neuropathogenesis in a Transgenic Mouse Model of Alzheimer's Disease</title><title>CNS neuroscience & therapeutics</title><addtitle>CNS Neurosci Ther</addtitle><description>Summary
Background
Previous studies have demonstrated that endoplasmic reticulum (ER) stress is activated in Alzheimer's disease (AD) brains. ER stress–triggered unfolded protein response (UPR) leads to tau phosphorylation and neuronal death.
Aims
In this study, we tested the hypothesis that hypoxia‐induced m‐calpain activation is involved in ER stress‐mediated AD pathogenesis.
Method
We employed a hypoxic exposure in APP/PS1 transgenic mice and SH‐SY5Y cells overexpressing human Swedish mutation APP (APPswe).
Results
We observed that hypoxia impaired spatial learning and memory in the APP/PS1 mouse. In the transgenic mouse brain, hypoxia increased the UPR, upregulated apoptotic signaling, enhanced the activation of calpain and glycogen synthase kinase‐3β (GSK3β), and increased tau hyperphosphorylation and β‐amyloid deposition. In APPswe cells, m‐calpain silencing reduced hypoxia‐induced cellular dysfunction and resulted in suppression of GSK3β activation, ER stress and tau hyperphosphorylation reduction as well as caspase pathway suppression.
Conclusion
These findings demonstrate that hypoxia‐induced abnormal calpain activation may increase ER stress‐induced apoptosis in AD pathogenesis. In contrast, a reduction in the expression of the m‐calpain isoform reduces ER stress‐linked apoptosis that is triggered by hypoxia. These findings suggest that hypoxia‐triggered m‐calpain activation is involved in ER stress‐mediated AD pathogenesis. m‐calpain is a potential target for AD therapeutics.</description><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Protein Precursor - genetics</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>APP/PS1 transgenic mouse</subject><subject>Biological and medical sciences</subject><subject>Calpain</subject><subject>Calpain - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Disease Models, Animal</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - genetics</subject><subject>Endoplasmic Reticulum - pathology</subject><subject>Endoplasmic Reticulum - physiology</subject><subject>Endoplasmic reticulum stress</subject><subject>Endoplasmic Reticulum Stress - physiology</subject><subject>Female</subject><subject>Glycogen synthase kinase 3</subject><subject>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - pathology</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia - genetics</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - pathology</subject><subject>Kinases</subject><subject>Maze Learning - physiology</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neurology</subject><subject>Original</subject><subject>Pathogenesis</subject><subject>Presenilin-1 - genetics</subject><subject>Random Allocation</subject><subject>RNA interference</subject><subject>Rodents</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><issn>1755-5930</issn><issn>1755-5949</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkstuEzEUhkcIREthwQsgSwgBi7TjGXtsb5CiNFCkUiQa1pbjOZO4eOzBngkNKx6BHe_Hk-A0IVwkJLzw9fN_fI7_LHuI82Oc2ol28RgXmOJb2SFmlI6oIOL2fl7mB9m9GK_yvCq44Hezg6LkXAgmDrNvZ-vOXxv1_cvXWTCLBQSoUZtWE2U7ZRwa696sVG-8Q9OV_wARTV3tO6tiazR6B73Rgx1adNkHiBEpV6MLGILvVL_0C3AQTURJR6FZUC6mnXTtjR8ipL4Gi3yDxvbzEkwL4WlEpyaCinA_u9MoG-HBbjzK3r-cziZno_O3r15PxucjTVmBR6CAF1RwRnJeUlHVc5bKgIuG8VxrDlxxwqp5xRnTZUJJ1QhR04o0uKyEwOVR9mKr2w3zFmoNrg_Kyi6YVoW19MrIP0-cWcqFX8mKiJLmJAk82wkE_3GA2MvWRA3WKgcpS4kJ5ZRggul_oCWnlSB0o_r4L_TKD8GlSmwoVuQ5Lniinm8pHXyMAZr9u3EuN86QyRnyxhmJffR7onvypxUS8GQHqKiVbdJvaRN_cYxxUd5U7GTLfTIW1v-OKCcXl9vQPwBCfdKd</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Wang, Chun‐Yan</creator><creator>Xie, Jing‐Wei</creator><creator>Wang, Tao</creator><creator>Xu, Ye</creator><creator>Cai, Jian‐Hui</creator><creator>Wang, Xu</creator><creator>Zhao, Bao‐Lu</creator><creator>An, Li</creator><creator>Wang, Zhan‐You</creator><general>Wiley-Blackwell</general><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201310</creationdate><title>Hypoxia‐Triggered m‐Calpain Activation Evokes Endoplasmic Reticulum Stress and Neuropathogenesis in a Transgenic Mouse Model of Alzheimer's Disease</title><author>Wang, Chun‐Yan ; Xie, Jing‐Wei ; Wang, Tao ; Xu, Ye ; Cai, Jian‐Hui ; Wang, Xu ; Zhao, Bao‐Lu ; An, Li ; Wang, Zhan‐You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5721-eae8259874083596db715112f780cc8e8a8476b6877c3e8246f99d564f1369913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Protein Precursor - genetics</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>APP/PS1 transgenic mouse</topic><topic>Biological and medical sciences</topic><topic>Calpain</topic><topic>Calpain - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Disease Models, Animal</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - genetics</topic><topic>Endoplasmic Reticulum - pathology</topic><topic>Endoplasmic Reticulum - physiology</topic><topic>Endoplasmic reticulum stress</topic><topic>Endoplasmic Reticulum Stress - physiology</topic><topic>Female</topic><topic>Glycogen synthase kinase 3</topic><topic>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - pathology</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia - genetics</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - pathology</topic><topic>Kinases</topic><topic>Maze Learning - physiology</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neurology</topic><topic>Original</topic><topic>Pathogenesis</topic><topic>Presenilin-1 - genetics</topic><topic>Random Allocation</topic><topic>RNA interference</topic><topic>Rodents</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun‐Yan</creatorcontrib><creatorcontrib>Xie, Jing‐Wei</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Xu, Ye</creatorcontrib><creatorcontrib>Cai, Jian‐Hui</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhao, Bao‐Lu</creatorcontrib><creatorcontrib>An, Li</creatorcontrib><creatorcontrib>Wang, Zhan‐You</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>CNS neuroscience & therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Chun‐Yan</au><au>Xie, Jing‐Wei</au><au>Wang, Tao</au><au>Xu, Ye</au><au>Cai, Jian‐Hui</au><au>Wang, Xu</au><au>Zhao, Bao‐Lu</au><au>An, Li</au><au>Wang, Zhan‐You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxia‐Triggered m‐Calpain Activation Evokes Endoplasmic Reticulum Stress and Neuropathogenesis in a Transgenic Mouse Model of Alzheimer's Disease</atitle><jtitle>CNS neuroscience & therapeutics</jtitle><addtitle>CNS Neurosci Ther</addtitle><date>2013-10</date><risdate>2013</risdate><volume>19</volume><issue>10</issue><spage>820</spage><epage>833</epage><pages>820-833</pages><issn>1755-5930</issn><eissn>1755-5949</eissn><abstract>Summary
Background
Previous studies have demonstrated that endoplasmic reticulum (ER) stress is activated in Alzheimer's disease (AD) brains. ER stress–triggered unfolded protein response (UPR) leads to tau phosphorylation and neuronal death.
Aims
In this study, we tested the hypothesis that hypoxia‐induced m‐calpain activation is involved in ER stress‐mediated AD pathogenesis.
Method
We employed a hypoxic exposure in APP/PS1 transgenic mice and SH‐SY5Y cells overexpressing human Swedish mutation APP (APPswe).
Results
We observed that hypoxia impaired spatial learning and memory in the APP/PS1 mouse. In the transgenic mouse brain, hypoxia increased the UPR, upregulated apoptotic signaling, enhanced the activation of calpain and glycogen synthase kinase‐3β (GSK3β), and increased tau hyperphosphorylation and β‐amyloid deposition. In APPswe cells, m‐calpain silencing reduced hypoxia‐induced cellular dysfunction and resulted in suppression of GSK3β activation, ER stress and tau hyperphosphorylation reduction as well as caspase pathway suppression.
Conclusion
These findings demonstrate that hypoxia‐induced abnormal calpain activation may increase ER stress‐induced apoptosis in AD pathogenesis. In contrast, a reduction in the expression of the m‐calpain isoform reduces ER stress‐linked apoptosis that is triggered by hypoxia. These findings suggest that hypoxia‐triggered m‐calpain activation is involved in ER stress‐mediated AD pathogenesis. m‐calpain is a potential target for AD therapeutics.</abstract><cop>Oxford</cop><pub>Wiley-Blackwell</pub><pmid>23889979</pmid><doi>10.1111/cns.12151</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1755-5930 |
ispartof | CNS neuroscience & therapeutics, 2013-10, Vol.19 (10), p.820-833 |
issn | 1755-5930 1755-5949 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6493504 |
source | Wiley-Blackwell Open Access Titles |
subjects | Alzheimer Disease - genetics Alzheimer Disease - metabolism Alzheimer Disease - pathology Alzheimer's disease Amyloid beta-Protein Precursor - genetics Animals Apoptosis APP/PS1 transgenic mouse Biological and medical sciences Calpain Calpain - metabolism Cell Line, Tumor Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Disease Models, Animal Endoplasmic reticulum Endoplasmic Reticulum - genetics Endoplasmic Reticulum - pathology Endoplasmic Reticulum - physiology Endoplasmic reticulum stress Endoplasmic Reticulum Stress - physiology Female Glycogen synthase kinase 3 Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy Hippocampus - metabolism Hippocampus - pathology Humans Hypoxia Hypoxia - genetics Hypoxia - metabolism Hypoxia - pathology Kinases Maze Learning - physiology Medical sciences Mice Mice, Inbred C57BL Mice, Transgenic Nervous system (semeiology, syndromes) Neurology Original Pathogenesis Presenilin-1 - genetics Random Allocation RNA interference Rodents Vascular diseases and vascular malformations of the nervous system |
title | Hypoxia‐Triggered m‐Calpain Activation Evokes Endoplasmic Reticulum Stress and Neuropathogenesis in a Transgenic Mouse Model of Alzheimer's Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxia%E2%80%90Triggered%20m%E2%80%90Calpain%20Activation%20Evokes%20Endoplasmic%20Reticulum%20Stress%20and%20Neuropathogenesis%20in%20a%20Transgenic%20Mouse%20Model%20of%20Alzheimer's%20Disease&rft.jtitle=CNS%20neuroscience%20&%20therapeutics&rft.au=Wang,%20Chun%E2%80%90Yan&rft.date=2013-10&rft.volume=19&rft.issue=10&rft.spage=820&rft.epage=833&rft.pages=820-833&rft.issn=1755-5930&rft.eissn=1755-5949&rft_id=info:doi/10.1111/cns.12151&rft_dat=%3Cproquest_24P%3E3083450551%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437200128&rft_id=info:pmid/23889979&rfr_iscdi=true |