Hypoxia‐Triggered m‐Calpain Activation Evokes Endoplasmic Reticulum Stress and Neuropathogenesis in a Transgenic Mouse Model of Alzheimer's Disease

Summary Background Previous studies have demonstrated that endoplasmic reticulum (ER) stress is activated in Alzheimer's disease (AD) brains. ER stress–triggered unfolded protein response (UPR) leads to tau phosphorylation and neuronal death. Aims In this study, we tested the hypothesis that hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CNS neuroscience & therapeutics 2013-10, Vol.19 (10), p.820-833
Hauptverfasser: Wang, Chun‐Yan, Xie, Jing‐Wei, Wang, Tao, Xu, Ye, Cai, Jian‐Hui, Wang, Xu, Zhao, Bao‐Lu, An, Li, Wang, Zhan‐You
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 833
container_issue 10
container_start_page 820
container_title CNS neuroscience & therapeutics
container_volume 19
creator Wang, Chun‐Yan
Xie, Jing‐Wei
Wang, Tao
Xu, Ye
Cai, Jian‐Hui
Wang, Xu
Zhao, Bao‐Lu
An, Li
Wang, Zhan‐You
description Summary Background Previous studies have demonstrated that endoplasmic reticulum (ER) stress is activated in Alzheimer's disease (AD) brains. ER stress–triggered unfolded protein response (UPR) leads to tau phosphorylation and neuronal death. Aims In this study, we tested the hypothesis that hypoxia‐induced m‐calpain activation is involved in ER stress‐mediated AD pathogenesis. Method We employed a hypoxic exposure in APP/PS1 transgenic mice and SH‐SY5Y cells overexpressing human Swedish mutation APP (APPswe). Results We observed that hypoxia impaired spatial learning and memory in the APP/PS1 mouse. In the transgenic mouse brain, hypoxia increased the UPR, upregulated apoptotic signaling, enhanced the activation of calpain and glycogen synthase kinase‐3β (GSK3β), and increased tau hyperphosphorylation and β‐amyloid deposition. In APPswe cells, m‐calpain silencing reduced hypoxia‐induced cellular dysfunction and resulted in suppression of GSK3β activation, ER stress and tau hyperphosphorylation reduction as well as caspase pathway suppression. Conclusion These findings demonstrate that hypoxia‐induced abnormal calpain activation may increase ER stress‐induced apoptosis in AD pathogenesis. In contrast, a reduction in the expression of the m‐calpain isoform reduces ER stress‐linked apoptosis that is triggered by hypoxia. These findings suggest that hypoxia‐triggered m‐calpain activation is involved in ER stress‐mediated AD pathogenesis. m‐calpain is a potential target for AD therapeutics.
doi_str_mv 10.1111/cns.12151
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6493504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083450551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5721-eae8259874083596db715112f780cc8e8a8476b6877c3e8246f99d564f1369913</originalsourceid><addsrcrecordid>eNqNkstuEzEUhkcIREthwQsgSwgBi7TjGXtsb5CiNFCkUiQa1pbjOZO4eOzBngkNKx6BHe_Hk-A0IVwkJLzw9fN_fI7_LHuI82Oc2ol28RgXmOJb2SFmlI6oIOL2fl7mB9m9GK_yvCq44Hezg6LkXAgmDrNvZ-vOXxv1_cvXWTCLBQSoUZtWE2U7ZRwa696sVG-8Q9OV_wARTV3tO6tiazR6B73Rgx1adNkHiBEpV6MLGILvVL_0C3AQTURJR6FZUC6mnXTtjR8ipL4Gi3yDxvbzEkwL4WlEpyaCinA_u9MoG-HBbjzK3r-cziZno_O3r15PxucjTVmBR6CAF1RwRnJeUlHVc5bKgIuG8VxrDlxxwqp5xRnTZUJJ1QhR04o0uKyEwOVR9mKr2w3zFmoNrg_Kyi6YVoW19MrIP0-cWcqFX8mKiJLmJAk82wkE_3GA2MvWRA3WKgcpS4kJ5ZRggul_oCWnlSB0o_r4L_TKD8GlSmwoVuQ5Lniinm8pHXyMAZr9u3EuN86QyRnyxhmJffR7onvypxUS8GQHqKiVbdJvaRN_cYxxUd5U7GTLfTIW1v-OKCcXl9vQPwBCfdKd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437200128</pqid></control><display><type>article</type><title>Hypoxia‐Triggered m‐Calpain Activation Evokes Endoplasmic Reticulum Stress and Neuropathogenesis in a Transgenic Mouse Model of Alzheimer's Disease</title><source>Wiley-Blackwell Open Access Titles</source><creator>Wang, Chun‐Yan ; Xie, Jing‐Wei ; Wang, Tao ; Xu, Ye ; Cai, Jian‐Hui ; Wang, Xu ; Zhao, Bao‐Lu ; An, Li ; Wang, Zhan‐You</creator><creatorcontrib>Wang, Chun‐Yan ; Xie, Jing‐Wei ; Wang, Tao ; Xu, Ye ; Cai, Jian‐Hui ; Wang, Xu ; Zhao, Bao‐Lu ; An, Li ; Wang, Zhan‐You</creatorcontrib><description>Summary Background Previous studies have demonstrated that endoplasmic reticulum (ER) stress is activated in Alzheimer's disease (AD) brains. ER stress–triggered unfolded protein response (UPR) leads to tau phosphorylation and neuronal death. Aims In this study, we tested the hypothesis that hypoxia‐induced m‐calpain activation is involved in ER stress‐mediated AD pathogenesis. Method We employed a hypoxic exposure in APP/PS1 transgenic mice and SH‐SY5Y cells overexpressing human Swedish mutation APP (APPswe). Results We observed that hypoxia impaired spatial learning and memory in the APP/PS1 mouse. In the transgenic mouse brain, hypoxia increased the UPR, upregulated apoptotic signaling, enhanced the activation of calpain and glycogen synthase kinase‐3β (GSK3β), and increased tau hyperphosphorylation and β‐amyloid deposition. In APPswe cells, m‐calpain silencing reduced hypoxia‐induced cellular dysfunction and resulted in suppression of GSK3β activation, ER stress and tau hyperphosphorylation reduction as well as caspase pathway suppression. Conclusion These findings demonstrate that hypoxia‐induced abnormal calpain activation may increase ER stress‐induced apoptosis in AD pathogenesis. In contrast, a reduction in the expression of the m‐calpain isoform reduces ER stress‐linked apoptosis that is triggered by hypoxia. These findings suggest that hypoxia‐triggered m‐calpain activation is involved in ER stress‐mediated AD pathogenesis. m‐calpain is a potential target for AD therapeutics.</description><identifier>ISSN: 1755-5930</identifier><identifier>EISSN: 1755-5949</identifier><identifier>DOI: 10.1111/cns.12151</identifier><identifier>PMID: 23889979</identifier><language>eng</language><publisher>Oxford: Wiley-Blackwell</publisher><subject>Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Alzheimer's disease ; Amyloid beta-Protein Precursor - genetics ; Animals ; Apoptosis ; APP/PS1 transgenic mouse ; Biological and medical sciences ; Calpain ; Calpain - metabolism ; Cell Line, Tumor ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Disease Models, Animal ; Endoplasmic reticulum ; Endoplasmic Reticulum - genetics ; Endoplasmic Reticulum - pathology ; Endoplasmic Reticulum - physiology ; Endoplasmic reticulum stress ; Endoplasmic Reticulum Stress - physiology ; Female ; Glycogen synthase kinase 3 ; Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy ; Hippocampus - metabolism ; Hippocampus - pathology ; Humans ; Hypoxia ; Hypoxia - genetics ; Hypoxia - metabolism ; Hypoxia - pathology ; Kinases ; Maze Learning - physiology ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nervous system (semeiology, syndromes) ; Neurology ; Original ; Pathogenesis ; Presenilin-1 - genetics ; Random Allocation ; RNA interference ; Rodents ; Vascular diseases and vascular malformations of the nervous system</subject><ispartof>CNS neuroscience &amp; therapeutics, 2013-10, Vol.19 (10), p.820-833</ispartof><rights>2013 John Wiley &amp; Sons Ltd</rights><rights>2014 INIST-CNRS</rights><rights>2013 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2013 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5721-eae8259874083596db715112f780cc8e8a8476b6877c3e8246f99d564f1369913</citedby><cites>FETCH-LOGICAL-c5721-eae8259874083596db715112f780cc8e8a8476b6877c3e8246f99d564f1369913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493504/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493504/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcns.12151$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27789391$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23889979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chun‐Yan</creatorcontrib><creatorcontrib>Xie, Jing‐Wei</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Xu, Ye</creatorcontrib><creatorcontrib>Cai, Jian‐Hui</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhao, Bao‐Lu</creatorcontrib><creatorcontrib>An, Li</creatorcontrib><creatorcontrib>Wang, Zhan‐You</creatorcontrib><title>Hypoxia‐Triggered m‐Calpain Activation Evokes Endoplasmic Reticulum Stress and Neuropathogenesis in a Transgenic Mouse Model of Alzheimer's Disease</title><title>CNS neuroscience &amp; therapeutics</title><addtitle>CNS Neurosci Ther</addtitle><description>Summary Background Previous studies have demonstrated that endoplasmic reticulum (ER) stress is activated in Alzheimer's disease (AD) brains. ER stress–triggered unfolded protein response (UPR) leads to tau phosphorylation and neuronal death. Aims In this study, we tested the hypothesis that hypoxia‐induced m‐calpain activation is involved in ER stress‐mediated AD pathogenesis. Method We employed a hypoxic exposure in APP/PS1 transgenic mice and SH‐SY5Y cells overexpressing human Swedish mutation APP (APPswe). Results We observed that hypoxia impaired spatial learning and memory in the APP/PS1 mouse. In the transgenic mouse brain, hypoxia increased the UPR, upregulated apoptotic signaling, enhanced the activation of calpain and glycogen synthase kinase‐3β (GSK3β), and increased tau hyperphosphorylation and β‐amyloid deposition. In APPswe cells, m‐calpain silencing reduced hypoxia‐induced cellular dysfunction and resulted in suppression of GSK3β activation, ER stress and tau hyperphosphorylation reduction as well as caspase pathway suppression. Conclusion These findings demonstrate that hypoxia‐induced abnormal calpain activation may increase ER stress‐induced apoptosis in AD pathogenesis. In contrast, a reduction in the expression of the m‐calpain isoform reduces ER stress‐linked apoptosis that is triggered by hypoxia. These findings suggest that hypoxia‐triggered m‐calpain activation is involved in ER stress‐mediated AD pathogenesis. m‐calpain is a potential target for AD therapeutics.</description><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Protein Precursor - genetics</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>APP/PS1 transgenic mouse</subject><subject>Biological and medical sciences</subject><subject>Calpain</subject><subject>Calpain - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Disease Models, Animal</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - genetics</subject><subject>Endoplasmic Reticulum - pathology</subject><subject>Endoplasmic Reticulum - physiology</subject><subject>Endoplasmic reticulum stress</subject><subject>Endoplasmic Reticulum Stress - physiology</subject><subject>Female</subject><subject>Glycogen synthase kinase 3</subject><subject>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - pathology</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia - genetics</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - pathology</subject><subject>Kinases</subject><subject>Maze Learning - physiology</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neurology</subject><subject>Original</subject><subject>Pathogenesis</subject><subject>Presenilin-1 - genetics</subject><subject>Random Allocation</subject><subject>RNA interference</subject><subject>Rodents</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><issn>1755-5930</issn><issn>1755-5949</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkstuEzEUhkcIREthwQsgSwgBi7TjGXtsb5CiNFCkUiQa1pbjOZO4eOzBngkNKx6BHe_Hk-A0IVwkJLzw9fN_fI7_LHuI82Oc2ol28RgXmOJb2SFmlI6oIOL2fl7mB9m9GK_yvCq44Hezg6LkXAgmDrNvZ-vOXxv1_cvXWTCLBQSoUZtWE2U7ZRwa696sVG-8Q9OV_wARTV3tO6tiazR6B73Rgx1adNkHiBEpV6MLGILvVL_0C3AQTURJR6FZUC6mnXTtjR8ipL4Gi3yDxvbzEkwL4WlEpyaCinA_u9MoG-HBbjzK3r-cziZno_O3r15PxucjTVmBR6CAF1RwRnJeUlHVc5bKgIuG8VxrDlxxwqp5xRnTZUJJ1QhR04o0uKyEwOVR9mKr2w3zFmoNrg_Kyi6YVoW19MrIP0-cWcqFX8mKiJLmJAk82wkE_3GA2MvWRA3WKgcpS4kJ5ZRggul_oCWnlSB0o_r4L_TKD8GlSmwoVuQ5Lniinm8pHXyMAZr9u3EuN86QyRnyxhmJffR7onvypxUS8GQHqKiVbdJvaRN_cYxxUd5U7GTLfTIW1v-OKCcXl9vQPwBCfdKd</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Wang, Chun‐Yan</creator><creator>Xie, Jing‐Wei</creator><creator>Wang, Tao</creator><creator>Xu, Ye</creator><creator>Cai, Jian‐Hui</creator><creator>Wang, Xu</creator><creator>Zhao, Bao‐Lu</creator><creator>An, Li</creator><creator>Wang, Zhan‐You</creator><general>Wiley-Blackwell</general><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201310</creationdate><title>Hypoxia‐Triggered m‐Calpain Activation Evokes Endoplasmic Reticulum Stress and Neuropathogenesis in a Transgenic Mouse Model of Alzheimer's Disease</title><author>Wang, Chun‐Yan ; Xie, Jing‐Wei ; Wang, Tao ; Xu, Ye ; Cai, Jian‐Hui ; Wang, Xu ; Zhao, Bao‐Lu ; An, Li ; Wang, Zhan‐You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5721-eae8259874083596db715112f780cc8e8a8476b6877c3e8246f99d564f1369913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Protein Precursor - genetics</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>APP/PS1 transgenic mouse</topic><topic>Biological and medical sciences</topic><topic>Calpain</topic><topic>Calpain - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Disease Models, Animal</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - genetics</topic><topic>Endoplasmic Reticulum - pathology</topic><topic>Endoplasmic Reticulum - physiology</topic><topic>Endoplasmic reticulum stress</topic><topic>Endoplasmic Reticulum Stress - physiology</topic><topic>Female</topic><topic>Glycogen synthase kinase 3</topic><topic>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - pathology</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia - genetics</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - pathology</topic><topic>Kinases</topic><topic>Maze Learning - physiology</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neurology</topic><topic>Original</topic><topic>Pathogenesis</topic><topic>Presenilin-1 - genetics</topic><topic>Random Allocation</topic><topic>RNA interference</topic><topic>Rodents</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun‐Yan</creatorcontrib><creatorcontrib>Xie, Jing‐Wei</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Xu, Ye</creatorcontrib><creatorcontrib>Cai, Jian‐Hui</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhao, Bao‐Lu</creatorcontrib><creatorcontrib>An, Li</creatorcontrib><creatorcontrib>Wang, Zhan‐You</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>CNS neuroscience &amp; therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Chun‐Yan</au><au>Xie, Jing‐Wei</au><au>Wang, Tao</au><au>Xu, Ye</au><au>Cai, Jian‐Hui</au><au>Wang, Xu</au><au>Zhao, Bao‐Lu</au><au>An, Li</au><au>Wang, Zhan‐You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxia‐Triggered m‐Calpain Activation Evokes Endoplasmic Reticulum Stress and Neuropathogenesis in a Transgenic Mouse Model of Alzheimer's Disease</atitle><jtitle>CNS neuroscience &amp; therapeutics</jtitle><addtitle>CNS Neurosci Ther</addtitle><date>2013-10</date><risdate>2013</risdate><volume>19</volume><issue>10</issue><spage>820</spage><epage>833</epage><pages>820-833</pages><issn>1755-5930</issn><eissn>1755-5949</eissn><abstract>Summary Background Previous studies have demonstrated that endoplasmic reticulum (ER) stress is activated in Alzheimer's disease (AD) brains. ER stress–triggered unfolded protein response (UPR) leads to tau phosphorylation and neuronal death. Aims In this study, we tested the hypothesis that hypoxia‐induced m‐calpain activation is involved in ER stress‐mediated AD pathogenesis. Method We employed a hypoxic exposure in APP/PS1 transgenic mice and SH‐SY5Y cells overexpressing human Swedish mutation APP (APPswe). Results We observed that hypoxia impaired spatial learning and memory in the APP/PS1 mouse. In the transgenic mouse brain, hypoxia increased the UPR, upregulated apoptotic signaling, enhanced the activation of calpain and glycogen synthase kinase‐3β (GSK3β), and increased tau hyperphosphorylation and β‐amyloid deposition. In APPswe cells, m‐calpain silencing reduced hypoxia‐induced cellular dysfunction and resulted in suppression of GSK3β activation, ER stress and tau hyperphosphorylation reduction as well as caspase pathway suppression. Conclusion These findings demonstrate that hypoxia‐induced abnormal calpain activation may increase ER stress‐induced apoptosis in AD pathogenesis. In contrast, a reduction in the expression of the m‐calpain isoform reduces ER stress‐linked apoptosis that is triggered by hypoxia. These findings suggest that hypoxia‐triggered m‐calpain activation is involved in ER stress‐mediated AD pathogenesis. m‐calpain is a potential target for AD therapeutics.</abstract><cop>Oxford</cop><pub>Wiley-Blackwell</pub><pmid>23889979</pmid><doi>10.1111/cns.12151</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1755-5930
ispartof CNS neuroscience & therapeutics, 2013-10, Vol.19 (10), p.820-833
issn 1755-5930
1755-5949
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6493504
source Wiley-Blackwell Open Access Titles
subjects Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Alzheimer's disease
Amyloid beta-Protein Precursor - genetics
Animals
Apoptosis
APP/PS1 transgenic mouse
Biological and medical sciences
Calpain
Calpain - metabolism
Cell Line, Tumor
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Disease Models, Animal
Endoplasmic reticulum
Endoplasmic Reticulum - genetics
Endoplasmic Reticulum - pathology
Endoplasmic Reticulum - physiology
Endoplasmic reticulum stress
Endoplasmic Reticulum Stress - physiology
Female
Glycogen synthase kinase 3
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Hippocampus - metabolism
Hippocampus - pathology
Humans
Hypoxia
Hypoxia - genetics
Hypoxia - metabolism
Hypoxia - pathology
Kinases
Maze Learning - physiology
Medical sciences
Mice
Mice, Inbred C57BL
Mice, Transgenic
Nervous system (semeiology, syndromes)
Neurology
Original
Pathogenesis
Presenilin-1 - genetics
Random Allocation
RNA interference
Rodents
Vascular diseases and vascular malformations of the nervous system
title Hypoxia‐Triggered m‐Calpain Activation Evokes Endoplasmic Reticulum Stress and Neuropathogenesis in a Transgenic Mouse Model of Alzheimer's Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxia%E2%80%90Triggered%20m%E2%80%90Calpain%20Activation%20Evokes%20Endoplasmic%20Reticulum%20Stress%20and%20Neuropathogenesis%20in%20a%20Transgenic%20Mouse%20Model%20of%20Alzheimer's%20Disease&rft.jtitle=CNS%20neuroscience%20&%20therapeutics&rft.au=Wang,%20Chun%E2%80%90Yan&rft.date=2013-10&rft.volume=19&rft.issue=10&rft.spage=820&rft.epage=833&rft.pages=820-833&rft.issn=1755-5930&rft.eissn=1755-5949&rft_id=info:doi/10.1111/cns.12151&rft_dat=%3Cproquest_24P%3E3083450551%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437200128&rft_id=info:pmid/23889979&rfr_iscdi=true