Excessive Autophagy Contributes to Neuron Death in Cerebral Ischemia

SUMMARY Aims: To determine the extent to which autophagy contributes to neuronal death in cerebral hypoxia and ischemia. Methods: We performed immunocytochemistry, western blot, cell viability assay, and electron microscopy to analyze autophagy activities in vitro and in vivo.Results: In both primar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CNS neuroscience & therapeutics 2012-03, Vol.18 (3), p.250-260
Hauptverfasser: Shi, Ruoyang, Weng, Jiequn, Zhao, Ling, Li, Xin-Min, Gao, Tian-Ming, Kong, Jiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 3
container_start_page 250
container_title CNS neuroscience & therapeutics
container_volume 18
creator Shi, Ruoyang
Weng, Jiequn
Zhao, Ling
Li, Xin-Min
Gao, Tian-Ming
Kong, Jiming
description SUMMARY Aims: To determine the extent to which autophagy contributes to neuronal death in cerebral hypoxia and ischemia. Methods: We performed immunocytochemistry, western blot, cell viability assay, and electron microscopy to analyze autophagy activities in vitro and in vivo.Results: In both primary cortical neurons and SH‐SY5Y cells exposed to oxygen and glucose deprivation (OGD)for 6 h and reperfusion (RP) for 24, 48, and 72 h, respectively, an increase of autophagy was observed as determined by the increased ratio of LC3‐II to LC3‐I and Beclin‐1 (BECN1) expression. Using Fluoro‐Jade C and monodansylcadaverine double‐staining, and electron microscopy we found the increment in autophagy after OGD/RP was accompanied by increased autophagic cell death, and this increased cell death was inhibited by the specific autophagy inhibitor, 3‐methyladenine. The presence of large autolysosomes and numerous autophagosomes in cortical neurons were confirmed by electron microscopy. Autophagy activities were increased dramatically in the ischemic brains 3–7 days postinjury from a rat model of neonatal cerebral hypoxia/ischemia as shown by increased punctate LC3 staining and BECN1 expression. Conclusion: Excessive activation of autophagy contributes to neuronal death in cerebral ischemia.
doi_str_mv 10.1111/j.1755-5949.2012.00295.x
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6493486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283917348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6665-77c11e62c08640c3d07c9fe1f748afadb314a9a6f41b6c5e9d271cc9fab32e513</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhi0EYqPwF1AkhLhq8Efs2BJCmrJRJk3lYkMgbizHPVld0rjYyWj_Pe5awsfVfOMjnec9fu3XCGUE5yStt6uclJxPuSpUTjGhOcZU8Xz7CJ2OjcdjzfAJehbjCmNBpZJP0QmlRaEIlqfo_GJrIUZ3B9nZ0PvN0tzussp3fXD10EPMep_NYQi-y87B9MvMdVkFAepg2uwy2iWsnXmOnjSmjfDiuE_Q5w8XN9XH6dWn2WV1djW1Qgg-LUtLCAhqsRQFtmyBS6saIE1ZSNOYRc1IYZQRTUFqYTmoBS2JTYipGQVO2AS9P8zdDPUaFhaSTdPqTXBrE3baG6f_7XRuqW_9nRaFYoUUacCb44DgfwwQe7120ULbmg78ELUSkkj8IJIzypS6N_XqP3Llh9Cld9CUSqZImY5OlDxQNvgYAzSja4L1PlO90vu49D46vc9U32eqt0n68u9bj8LfISbg9REw0Zq2CaazLv7huOCCpm8wQe8O3E_Xwu7BBnQ1v05Fkk8Pchd72I5yE75rUbKS6y_zmZ7hrzff6PxaK_YL-rHL3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283917348</pqid></control><display><type>article</type><title>Excessive Autophagy Contributes to Neuron Death in Cerebral Ischemia</title><source>Wiley-Blackwell Open Access Titles</source><creator>Shi, Ruoyang ; Weng, Jiequn ; Zhao, Ling ; Li, Xin-Min ; Gao, Tian-Ming ; Kong, Jiming</creator><creatorcontrib>Shi, Ruoyang ; Weng, Jiequn ; Zhao, Ling ; Li, Xin-Min ; Gao, Tian-Ming ; Kong, Jiming</creatorcontrib><description>SUMMARY Aims: To determine the extent to which autophagy contributes to neuronal death in cerebral hypoxia and ischemia. Methods: We performed immunocytochemistry, western blot, cell viability assay, and electron microscopy to analyze autophagy activities in vitro and in vivo.Results: In both primary cortical neurons and SH‐SY5Y cells exposed to oxygen and glucose deprivation (OGD)for 6 h and reperfusion (RP) for 24, 48, and 72 h, respectively, an increase of autophagy was observed as determined by the increased ratio of LC3‐II to LC3‐I and Beclin‐1 (BECN1) expression. Using Fluoro‐Jade C and monodansylcadaverine double‐staining, and electron microscopy we found the increment in autophagy after OGD/RP was accompanied by increased autophagic cell death, and this increased cell death was inhibited by the specific autophagy inhibitor, 3‐methyladenine. The presence of large autolysosomes and numerous autophagosomes in cortical neurons were confirmed by electron microscopy. Autophagy activities were increased dramatically in the ischemic brains 3–7 days postinjury from a rat model of neonatal cerebral hypoxia/ischemia as shown by increased punctate LC3 staining and BECN1 expression. Conclusion: Excessive activation of autophagy contributes to neuronal death in cerebral ischemia.</description><identifier>ISSN: 1755-5930</identifier><identifier>EISSN: 1755-5949</identifier><identifier>DOI: 10.1111/j.1755-5949.2012.00295.x</identifier><identifier>PMID: 22449108</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Animals, Newborn ; Apoptosis ; Autophagic neuron death ; Autophagy ; Autophagy - physiology ; Biological and medical sciences ; Brain ; Brain Ischemia - metabolism ; Brain Ischemia - pathology ; Cell death ; Cell Death - physiology ; Cell viability ; Cells, Cultured ; Central nervous system ; Cortex ; Cortical neurons ; Electron microscopy ; Female ; Glucose ; Hypoxia ; Hypoxia/ischemia ; Immunocytochemistry ; Ischemia ; Medical sciences ; Microscopy ; Multiple sclerosis and variants. Guillain barré syndrome and other inflammatory polyneuropathies. Leukoencephalitis ; Neonates ; Nervous system ; Neurology ; Neurons ; Neurons - metabolism ; Neurons - pathology ; Neuropharmacology ; Neuroprotective agent ; Original ; Oxygen ; Oxygen and glucose deprivation (OGD) ; Phagocytosis ; Phagosomes ; Pharmacology. Drug treatments ; Pregnancy ; Rats ; Rats, Sprague-Dawley ; Reperfusion ; Vascular diseases and vascular malformations of the nervous system ; Western blotting</subject><ispartof>CNS neuroscience &amp; therapeutics, 2012-03, Vol.18 (3), p.250-260</ispartof><rights>2012 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2012 Blackwell Publishing Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Mar 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6665-77c11e62c08640c3d07c9fe1f748afadb314a9a6f41b6c5e9d271cc9fab32e513</citedby><cites>FETCH-LOGICAL-c6665-77c11e62c08640c3d07c9fe1f748afadb314a9a6f41b6c5e9d271cc9fab32e513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493486/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493486/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11543,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1755-5949.2012.00295.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25656259$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22449108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Ruoyang</creatorcontrib><creatorcontrib>Weng, Jiequn</creatorcontrib><creatorcontrib>Zhao, Ling</creatorcontrib><creatorcontrib>Li, Xin-Min</creatorcontrib><creatorcontrib>Gao, Tian-Ming</creatorcontrib><creatorcontrib>Kong, Jiming</creatorcontrib><title>Excessive Autophagy Contributes to Neuron Death in Cerebral Ischemia</title><title>CNS neuroscience &amp; therapeutics</title><addtitle>CNS Neurosci Ther</addtitle><description>SUMMARY Aims: To determine the extent to which autophagy contributes to neuronal death in cerebral hypoxia and ischemia. Methods: We performed immunocytochemistry, western blot, cell viability assay, and electron microscopy to analyze autophagy activities in vitro and in vivo.Results: In both primary cortical neurons and SH‐SY5Y cells exposed to oxygen and glucose deprivation (OGD)for 6 h and reperfusion (RP) for 24, 48, and 72 h, respectively, an increase of autophagy was observed as determined by the increased ratio of LC3‐II to LC3‐I and Beclin‐1 (BECN1) expression. Using Fluoro‐Jade C and monodansylcadaverine double‐staining, and electron microscopy we found the increment in autophagy after OGD/RP was accompanied by increased autophagic cell death, and this increased cell death was inhibited by the specific autophagy inhibitor, 3‐methyladenine. The presence of large autolysosomes and numerous autophagosomes in cortical neurons were confirmed by electron microscopy. Autophagy activities were increased dramatically in the ischemic brains 3–7 days postinjury from a rat model of neonatal cerebral hypoxia/ischemia as shown by increased punctate LC3 staining and BECN1 expression. Conclusion: Excessive activation of autophagy contributes to neuronal death in cerebral ischemia.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Apoptosis</subject><subject>Autophagic neuron death</subject><subject>Autophagy</subject><subject>Autophagy - physiology</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain Ischemia - metabolism</subject><subject>Brain Ischemia - pathology</subject><subject>Cell death</subject><subject>Cell Death - physiology</subject><subject>Cell viability</subject><subject>Cells, Cultured</subject><subject>Central nervous system</subject><subject>Cortex</subject><subject>Cortical neurons</subject><subject>Electron microscopy</subject><subject>Female</subject><subject>Glucose</subject><subject>Hypoxia</subject><subject>Hypoxia/ischemia</subject><subject>Immunocytochemistry</subject><subject>Ischemia</subject><subject>Medical sciences</subject><subject>Microscopy</subject><subject>Multiple sclerosis and variants. Guillain barré syndrome and other inflammatory polyneuropathies. Leukoencephalitis</subject><subject>Neonates</subject><subject>Nervous system</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neuropharmacology</subject><subject>Neuroprotective agent</subject><subject>Original</subject><subject>Oxygen</subject><subject>Oxygen and glucose deprivation (OGD)</subject><subject>Phagocytosis</subject><subject>Phagosomes</subject><subject>Pharmacology. Drug treatments</subject><subject>Pregnancy</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reperfusion</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><subject>Western blotting</subject><issn>1755-5930</issn><issn>1755-5949</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkl1v0zAUhi0EYqPwF1AkhLhq8Efs2BJCmrJRJk3lYkMgbizHPVld0rjYyWj_Pe5awsfVfOMjnec9fu3XCGUE5yStt6uclJxPuSpUTjGhOcZU8Xz7CJ2OjcdjzfAJehbjCmNBpZJP0QmlRaEIlqfo_GJrIUZ3B9nZ0PvN0tzussp3fXD10EPMep_NYQi-y87B9MvMdVkFAepg2uwy2iWsnXmOnjSmjfDiuE_Q5w8XN9XH6dWn2WV1djW1Qgg-LUtLCAhqsRQFtmyBS6saIE1ZSNOYRc1IYZQRTUFqYTmoBS2JTYipGQVO2AS9P8zdDPUaFhaSTdPqTXBrE3baG6f_7XRuqW_9nRaFYoUUacCb44DgfwwQe7120ULbmg78ELUSkkj8IJIzypS6N_XqP3Llh9Cld9CUSqZImY5OlDxQNvgYAzSja4L1PlO90vu49D46vc9U32eqt0n68u9bj8LfISbg9REw0Zq2CaazLv7huOCCpm8wQe8O3E_Xwu7BBnQ1v05Fkk8Pchd72I5yE75rUbKS6y_zmZ7hrzff6PxaK_YL-rHL3A</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Shi, Ruoyang</creator><creator>Weng, Jiequn</creator><creator>Zhao, Ling</creator><creator>Li, Xin-Min</creator><creator>Gao, Tian-Ming</creator><creator>Kong, Jiming</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201203</creationdate><title>Excessive Autophagy Contributes to Neuron Death in Cerebral Ischemia</title><author>Shi, Ruoyang ; Weng, Jiequn ; Zhao, Ling ; Li, Xin-Min ; Gao, Tian-Ming ; Kong, Jiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6665-77c11e62c08640c3d07c9fe1f748afadb314a9a6f41b6c5e9d271cc9fab32e513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Apoptosis</topic><topic>Autophagic neuron death</topic><topic>Autophagy</topic><topic>Autophagy - physiology</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain Ischemia - metabolism</topic><topic>Brain Ischemia - pathology</topic><topic>Cell death</topic><topic>Cell Death - physiology</topic><topic>Cell viability</topic><topic>Cells, Cultured</topic><topic>Central nervous system</topic><topic>Cortex</topic><topic>Cortical neurons</topic><topic>Electron microscopy</topic><topic>Female</topic><topic>Glucose</topic><topic>Hypoxia</topic><topic>Hypoxia/ischemia</topic><topic>Immunocytochemistry</topic><topic>Ischemia</topic><topic>Medical sciences</topic><topic>Microscopy</topic><topic>Multiple sclerosis and variants. Guillain barré syndrome and other inflammatory polyneuropathies. Leukoencephalitis</topic><topic>Neonates</topic><topic>Nervous system</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neuropharmacology</topic><topic>Neuroprotective agent</topic><topic>Original</topic><topic>Oxygen</topic><topic>Oxygen and glucose deprivation (OGD)</topic><topic>Phagocytosis</topic><topic>Phagosomes</topic><topic>Pharmacology. Drug treatments</topic><topic>Pregnancy</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reperfusion</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Ruoyang</creatorcontrib><creatorcontrib>Weng, Jiequn</creatorcontrib><creatorcontrib>Zhao, Ling</creatorcontrib><creatorcontrib>Li, Xin-Min</creatorcontrib><creatorcontrib>Gao, Tian-Ming</creatorcontrib><creatorcontrib>Kong, Jiming</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>CNS neuroscience &amp; therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Ruoyang</au><au>Weng, Jiequn</au><au>Zhao, Ling</au><au>Li, Xin-Min</au><au>Gao, Tian-Ming</au><au>Kong, Jiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excessive Autophagy Contributes to Neuron Death in Cerebral Ischemia</atitle><jtitle>CNS neuroscience &amp; therapeutics</jtitle><addtitle>CNS Neurosci Ther</addtitle><date>2012-03</date><risdate>2012</risdate><volume>18</volume><issue>3</issue><spage>250</spage><epage>260</epage><pages>250-260</pages><issn>1755-5930</issn><eissn>1755-5949</eissn><abstract>SUMMARY Aims: To determine the extent to which autophagy contributes to neuronal death in cerebral hypoxia and ischemia. Methods: We performed immunocytochemistry, western blot, cell viability assay, and electron microscopy to analyze autophagy activities in vitro and in vivo.Results: In both primary cortical neurons and SH‐SY5Y cells exposed to oxygen and glucose deprivation (OGD)for 6 h and reperfusion (RP) for 24, 48, and 72 h, respectively, an increase of autophagy was observed as determined by the increased ratio of LC3‐II to LC3‐I and Beclin‐1 (BECN1) expression. Using Fluoro‐Jade C and monodansylcadaverine double‐staining, and electron microscopy we found the increment in autophagy after OGD/RP was accompanied by increased autophagic cell death, and this increased cell death was inhibited by the specific autophagy inhibitor, 3‐methyladenine. The presence of large autolysosomes and numerous autophagosomes in cortical neurons were confirmed by electron microscopy. Autophagy activities were increased dramatically in the ischemic brains 3–7 days postinjury from a rat model of neonatal cerebral hypoxia/ischemia as shown by increased punctate LC3 staining and BECN1 expression. Conclusion: Excessive activation of autophagy contributes to neuronal death in cerebral ischemia.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22449108</pmid><doi>10.1111/j.1755-5949.2012.00295.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1755-5930
ispartof CNS neuroscience & therapeutics, 2012-03, Vol.18 (3), p.250-260
issn 1755-5930
1755-5949
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6493486
source Wiley-Blackwell Open Access Titles
subjects Animals
Animals, Newborn
Apoptosis
Autophagic neuron death
Autophagy
Autophagy - physiology
Biological and medical sciences
Brain
Brain Ischemia - metabolism
Brain Ischemia - pathology
Cell death
Cell Death - physiology
Cell viability
Cells, Cultured
Central nervous system
Cortex
Cortical neurons
Electron microscopy
Female
Glucose
Hypoxia
Hypoxia/ischemia
Immunocytochemistry
Ischemia
Medical sciences
Microscopy
Multiple sclerosis and variants. Guillain barré syndrome and other inflammatory polyneuropathies. Leukoencephalitis
Neonates
Nervous system
Neurology
Neurons
Neurons - metabolism
Neurons - pathology
Neuropharmacology
Neuroprotective agent
Original
Oxygen
Oxygen and glucose deprivation (OGD)
Phagocytosis
Phagosomes
Pharmacology. Drug treatments
Pregnancy
Rats
Rats, Sprague-Dawley
Reperfusion
Vascular diseases and vascular malformations of the nervous system
Western blotting
title Excessive Autophagy Contributes to Neuron Death in Cerebral Ischemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excessive%20Autophagy%20Contributes%20to%20Neuron%20Death%20in%20Cerebral%20Ischemia&rft.jtitle=CNS%20neuroscience%20&%20therapeutics&rft.au=Shi,%20Ruoyang&rft.date=2012-03&rft.volume=18&rft.issue=3&rft.spage=250&rft.epage=260&rft.pages=250-260&rft.issn=1755-5930&rft.eissn=1755-5949&rft_id=info:doi/10.1111/j.1755-5949.2012.00295.x&rft_dat=%3Cproquest_24P%3E2283917348%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283917348&rft_id=info:pmid/22449108&rfr_iscdi=true