The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials
•Neural stem cell fate is influenced by local microenvironment factors.•Local microenvironment cues include mechanical and topographical signals.•Presentation and abundance of specific microenvironment ligands affect cell fate.•Knowing factors that affect neural stem cell fate will improve biomateri...
Gespeichert in:
Veröffentlicht in: | Brain research bulletin 2019-05, Vol.148, p.25-33 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | |
container_start_page | 25 |
container_title | Brain research bulletin |
container_volume | 148 |
creator | Wilems, Thomas Vardhan, Sangamithra Wu, Siliang Sakiyama-Elbert, Shelly |
description | •Neural stem cell fate is influenced by local microenvironment factors.•Local microenvironment cues include mechanical and topographical signals.•Presentation and abundance of specific microenvironment ligands affect cell fate.•Knowing factors that affect neural stem cell fate will improve biomaterial design.
Transplantation of stem cells is a promising potential therapy for central nervous system disease and injury. The capacity for self-renewal, proliferation of progenitor cells, and multi-lineage potential underscores the need for controlling stem cell fate. Furthermore, transplantation within a hostile environment can lead to significant cell death and limited therapeutic potential. Tissue-engineered materials have been developed to both regulate stem cell fate, increase transplanted cell viability, and improve therapeutic outcomes. Traditionally, regulation of stem cell differentiation has been driven through soluble signals, such as growth factors. While these signals are important, insoluble factors from the local microenvironment or extracellular matrix (ECM) molecules also contribute to stem cell activity and fate. Understanding the microenvironment factors that influence stem cell fate, such as mechanical properties, topography, and presentation of specific ECM ligands, is necessary for designing improved biomaterials. Here we review some of the microenvironment factors that regulate stem cell fate and how they can be incorporated into biomaterials as part of potential CNS therapies. |
doi_str_mv | 10.1016/j.brainresbull.2019.03.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6492525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0361923018310074</els_id><sourcerecordid>2196521735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-cea53c7e6cfd8921e87526066d4d6b5b666aa2689c2f5c704cf348900cb105003</originalsourceid><addsrcrecordid>eNqNkUtv1TAQhS0EopfCX0AWKzYJYzt2EhZIqDylSmzK2nKcSa-vHLvYyaX99zi6pSo7VrOYc848PkLeMKgZMPXuUA_JuJAwD6v3NQfW1yBqgOYJ2bGuFRVvm_Yp2YFQrOq5gDPyIucDAKhOqufkTEDXd7Ltd-Tuao_UhcmvGCzSONHZ2RQxHF2KYcawUBNGirdLMha9X71JdDZLcrd0jh7t6jGXADomd3ThmgZck_E0LzjTzUAnsyD97ZZ9EQ0uFi8mZ3x-SZ5NpeCr-3pOfn75fHXxrbr88fX7xcfLykoplsqikcK2qOw0dj1n2LWSK1BqbEY1yEEpZQxXXW_5JG0LjZ1E0_UAdmAgAcQ5-XDKvVmHGUdbTioL6pvkZpPudDRO_9sJbq-v41GrpueSyxLw9j4gxV8r5kXPLm-nmYBxzZqzXknOWrFJ35-k5YU5J5wexjDQGzt90I_Z6Y2dBqELu2J-_XjRB-tfWEXw6STA8q6jw6SzdRu20SW0ix6j-585fwAxEbZb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196521735</pqid></control><display><type>article</type><title>The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wilems, Thomas ; Vardhan, Sangamithra ; Wu, Siliang ; Sakiyama-Elbert, Shelly</creator><creatorcontrib>Wilems, Thomas ; Vardhan, Sangamithra ; Wu, Siliang ; Sakiyama-Elbert, Shelly</creatorcontrib><description>•Neural stem cell fate is influenced by local microenvironment factors.•Local microenvironment cues include mechanical and topographical signals.•Presentation and abundance of specific microenvironment ligands affect cell fate.•Knowing factors that affect neural stem cell fate will improve biomaterial design.
Transplantation of stem cells is a promising potential therapy for central nervous system disease and injury. The capacity for self-renewal, proliferation of progenitor cells, and multi-lineage potential underscores the need for controlling stem cell fate. Furthermore, transplantation within a hostile environment can lead to significant cell death and limited therapeutic potential. Tissue-engineered materials have been developed to both regulate stem cell fate, increase transplanted cell viability, and improve therapeutic outcomes. Traditionally, regulation of stem cell differentiation has been driven through soluble signals, such as growth factors. While these signals are important, insoluble factors from the local microenvironment or extracellular matrix (ECM) molecules also contribute to stem cell activity and fate. Understanding the microenvironment factors that influence stem cell fate, such as mechanical properties, topography, and presentation of specific ECM ligands, is necessary for designing improved biomaterials. Here we review some of the microenvironment factors that regulate stem cell fate and how they can be incorporated into biomaterials as part of potential CNS therapies.</description><identifier>ISSN: 0361-9230</identifier><identifier>EISSN: 1873-2747</identifier><identifier>DOI: 10.1016/j.brainresbull.2019.03.004</identifier><identifier>PMID: 30898579</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biocompatible Materials ; Cell Differentiation - physiology ; Cell Survival ; Extracellular Matrix - physiology ; Humans ; Intercellular Signaling Peptides and Proteins - metabolism ; Neural Stem Cells - metabolism ; Stem Cell Niche - physiology</subject><ispartof>Brain research bulletin, 2019-05, Vol.148, p.25-33</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-cea53c7e6cfd8921e87526066d4d6b5b666aa2689c2f5c704cf348900cb105003</citedby><cites>FETCH-LOGICAL-c553t-cea53c7e6cfd8921e87526066d4d6b5b666aa2689c2f5c704cf348900cb105003</cites><orcidid>0000-0003-4832-5851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.brainresbull.2019.03.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30898579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilems, Thomas</creatorcontrib><creatorcontrib>Vardhan, Sangamithra</creatorcontrib><creatorcontrib>Wu, Siliang</creatorcontrib><creatorcontrib>Sakiyama-Elbert, Shelly</creatorcontrib><title>The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials</title><title>Brain research bulletin</title><addtitle>Brain Res Bull</addtitle><description>•Neural stem cell fate is influenced by local microenvironment factors.•Local microenvironment cues include mechanical and topographical signals.•Presentation and abundance of specific microenvironment ligands affect cell fate.•Knowing factors that affect neural stem cell fate will improve biomaterial design.
Transplantation of stem cells is a promising potential therapy for central nervous system disease and injury. The capacity for self-renewal, proliferation of progenitor cells, and multi-lineage potential underscores the need for controlling stem cell fate. Furthermore, transplantation within a hostile environment can lead to significant cell death and limited therapeutic potential. Tissue-engineered materials have been developed to both regulate stem cell fate, increase transplanted cell viability, and improve therapeutic outcomes. Traditionally, regulation of stem cell differentiation has been driven through soluble signals, such as growth factors. While these signals are important, insoluble factors from the local microenvironment or extracellular matrix (ECM) molecules also contribute to stem cell activity and fate. Understanding the microenvironment factors that influence stem cell fate, such as mechanical properties, topography, and presentation of specific ECM ligands, is necessary for designing improved biomaterials. Here we review some of the microenvironment factors that regulate stem cell fate and how they can be incorporated into biomaterials as part of potential CNS therapies.</description><subject>Animals</subject><subject>Biocompatible Materials</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Survival</subject><subject>Extracellular Matrix - physiology</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Neural Stem Cells - metabolism</subject><subject>Stem Cell Niche - physiology</subject><issn>0361-9230</issn><issn>1873-2747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1TAQhS0EopfCX0AWKzYJYzt2EhZIqDylSmzK2nKcSa-vHLvYyaX99zi6pSo7VrOYc848PkLeMKgZMPXuUA_JuJAwD6v3NQfW1yBqgOYJ2bGuFRVvm_Yp2YFQrOq5gDPyIucDAKhOqufkTEDXd7Ltd-Tuao_UhcmvGCzSONHZ2RQxHF2KYcawUBNGirdLMha9X71JdDZLcrd0jh7t6jGXADomd3ThmgZck_E0LzjTzUAnsyD97ZZ9EQ0uFi8mZ3x-SZ5NpeCr-3pOfn75fHXxrbr88fX7xcfLykoplsqikcK2qOw0dj1n2LWSK1BqbEY1yEEpZQxXXW_5JG0LjZ1E0_UAdmAgAcQ5-XDKvVmHGUdbTioL6pvkZpPudDRO_9sJbq-v41GrpueSyxLw9j4gxV8r5kXPLm-nmYBxzZqzXknOWrFJ35-k5YU5J5wexjDQGzt90I_Z6Y2dBqELu2J-_XjRB-tfWEXw6STA8q6jw6SzdRu20SW0ix6j-585fwAxEbZb</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Wilems, Thomas</creator><creator>Vardhan, Sangamithra</creator><creator>Wu, Siliang</creator><creator>Sakiyama-Elbert, Shelly</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4832-5851</orcidid></search><sort><creationdate>20190501</creationdate><title>The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials</title><author>Wilems, Thomas ; Vardhan, Sangamithra ; Wu, Siliang ; Sakiyama-Elbert, Shelly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-cea53c7e6cfd8921e87526066d4d6b5b666aa2689c2f5c704cf348900cb105003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biocompatible Materials</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Survival</topic><topic>Extracellular Matrix - physiology</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Neural Stem Cells - metabolism</topic><topic>Stem Cell Niche - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilems, Thomas</creatorcontrib><creatorcontrib>Vardhan, Sangamithra</creatorcontrib><creatorcontrib>Wu, Siliang</creatorcontrib><creatorcontrib>Sakiyama-Elbert, Shelly</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain research bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilems, Thomas</au><au>Vardhan, Sangamithra</au><au>Wu, Siliang</au><au>Sakiyama-Elbert, Shelly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials</atitle><jtitle>Brain research bulletin</jtitle><addtitle>Brain Res Bull</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>148</volume><spage>25</spage><epage>33</epage><pages>25-33</pages><issn>0361-9230</issn><eissn>1873-2747</eissn><abstract>•Neural stem cell fate is influenced by local microenvironment factors.•Local microenvironment cues include mechanical and topographical signals.•Presentation and abundance of specific microenvironment ligands affect cell fate.•Knowing factors that affect neural stem cell fate will improve biomaterial design.
Transplantation of stem cells is a promising potential therapy for central nervous system disease and injury. The capacity for self-renewal, proliferation of progenitor cells, and multi-lineage potential underscores the need for controlling stem cell fate. Furthermore, transplantation within a hostile environment can lead to significant cell death and limited therapeutic potential. Tissue-engineered materials have been developed to both regulate stem cell fate, increase transplanted cell viability, and improve therapeutic outcomes. Traditionally, regulation of stem cell differentiation has been driven through soluble signals, such as growth factors. While these signals are important, insoluble factors from the local microenvironment or extracellular matrix (ECM) molecules also contribute to stem cell activity and fate. Understanding the microenvironment factors that influence stem cell fate, such as mechanical properties, topography, and presentation of specific ECM ligands, is necessary for designing improved biomaterials. Here we review some of the microenvironment factors that regulate stem cell fate and how they can be incorporated into biomaterials as part of potential CNS therapies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30898579</pmid><doi>10.1016/j.brainresbull.2019.03.004</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4832-5851</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-9230 |
ispartof | Brain research bulletin, 2019-05, Vol.148, p.25-33 |
issn | 0361-9230 1873-2747 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6492525 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Biocompatible Materials Cell Differentiation - physiology Cell Survival Extracellular Matrix - physiology Humans Intercellular Signaling Peptides and Proteins - metabolism Neural Stem Cells - metabolism Stem Cell Niche - physiology |
title | The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20microenvironment%20and%20extracellular%20matrix%20molecules%20in%20driving%20neural%20stem%20cell%20fate%20within%20biomaterials&rft.jtitle=Brain%20research%20bulletin&rft.au=Wilems,%20Thomas&rft.date=2019-05-01&rft.volume=148&rft.spage=25&rft.epage=33&rft.pages=25-33&rft.issn=0361-9230&rft.eissn=1873-2747&rft_id=info:doi/10.1016/j.brainresbull.2019.03.004&rft_dat=%3Cproquest_pubme%3E2196521735%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196521735&rft_id=info:pmid/30898579&rft_els_id=S0361923018310074&rfr_iscdi=true |