The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials

•Neural stem cell fate is influenced by local microenvironment factors.•Local microenvironment cues include mechanical and topographical signals.•Presentation and abundance of specific microenvironment ligands affect cell fate.•Knowing factors that affect neural stem cell fate will improve biomateri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research bulletin 2019-05, Vol.148, p.25-33
Hauptverfasser: Wilems, Thomas, Vardhan, Sangamithra, Wu, Siliang, Sakiyama-Elbert, Shelly
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue
container_start_page 25
container_title Brain research bulletin
container_volume 148
creator Wilems, Thomas
Vardhan, Sangamithra
Wu, Siliang
Sakiyama-Elbert, Shelly
description •Neural stem cell fate is influenced by local microenvironment factors.•Local microenvironment cues include mechanical and topographical signals.•Presentation and abundance of specific microenvironment ligands affect cell fate.•Knowing factors that affect neural stem cell fate will improve biomaterial design. Transplantation of stem cells is a promising potential therapy for central nervous system disease and injury. The capacity for self-renewal, proliferation of progenitor cells, and multi-lineage potential underscores the need for controlling stem cell fate. Furthermore, transplantation within a hostile environment can lead to significant cell death and limited therapeutic potential. Tissue-engineered materials have been developed to both regulate stem cell fate, increase transplanted cell viability, and improve therapeutic outcomes. Traditionally, regulation of stem cell differentiation has been driven through soluble signals, such as growth factors. While these signals are important, insoluble factors from the local microenvironment or extracellular matrix (ECM) molecules also contribute to stem cell activity and fate. Understanding the microenvironment factors that influence stem cell fate, such as mechanical properties, topography, and presentation of specific ECM ligands, is necessary for designing improved biomaterials. Here we review some of the microenvironment factors that regulate stem cell fate and how they can be incorporated into biomaterials as part of potential CNS therapies.
doi_str_mv 10.1016/j.brainresbull.2019.03.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6492525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0361923018310074</els_id><sourcerecordid>2196521735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-cea53c7e6cfd8921e87526066d4d6b5b666aa2689c2f5c704cf348900cb105003</originalsourceid><addsrcrecordid>eNqNkUtv1TAQhS0EopfCX0AWKzYJYzt2EhZIqDylSmzK2nKcSa-vHLvYyaX99zi6pSo7VrOYc848PkLeMKgZMPXuUA_JuJAwD6v3NQfW1yBqgOYJ2bGuFRVvm_Yp2YFQrOq5gDPyIucDAKhOqufkTEDXd7Ltd-Tuao_UhcmvGCzSONHZ2RQxHF2KYcawUBNGirdLMha9X71JdDZLcrd0jh7t6jGXADomd3ThmgZck_E0LzjTzUAnsyD97ZZ9EQ0uFi8mZ3x-SZ5NpeCr-3pOfn75fHXxrbr88fX7xcfLykoplsqikcK2qOw0dj1n2LWSK1BqbEY1yEEpZQxXXW_5JG0LjZ1E0_UAdmAgAcQ5-XDKvVmHGUdbTioL6pvkZpPudDRO_9sJbq-v41GrpueSyxLw9j4gxV8r5kXPLm-nmYBxzZqzXknOWrFJ35-k5YU5J5wexjDQGzt90I_Z6Y2dBqELu2J-_XjRB-tfWEXw6STA8q6jw6SzdRu20SW0ix6j-585fwAxEbZb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196521735</pqid></control><display><type>article</type><title>The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wilems, Thomas ; Vardhan, Sangamithra ; Wu, Siliang ; Sakiyama-Elbert, Shelly</creator><creatorcontrib>Wilems, Thomas ; Vardhan, Sangamithra ; Wu, Siliang ; Sakiyama-Elbert, Shelly</creatorcontrib><description>•Neural stem cell fate is influenced by local microenvironment factors.•Local microenvironment cues include mechanical and topographical signals.•Presentation and abundance of specific microenvironment ligands affect cell fate.•Knowing factors that affect neural stem cell fate will improve biomaterial design. Transplantation of stem cells is a promising potential therapy for central nervous system disease and injury. The capacity for self-renewal, proliferation of progenitor cells, and multi-lineage potential underscores the need for controlling stem cell fate. Furthermore, transplantation within a hostile environment can lead to significant cell death and limited therapeutic potential. Tissue-engineered materials have been developed to both regulate stem cell fate, increase transplanted cell viability, and improve therapeutic outcomes. Traditionally, regulation of stem cell differentiation has been driven through soluble signals, such as growth factors. While these signals are important, insoluble factors from the local microenvironment or extracellular matrix (ECM) molecules also contribute to stem cell activity and fate. Understanding the microenvironment factors that influence stem cell fate, such as mechanical properties, topography, and presentation of specific ECM ligands, is necessary for designing improved biomaterials. Here we review some of the microenvironment factors that regulate stem cell fate and how they can be incorporated into biomaterials as part of potential CNS therapies.</description><identifier>ISSN: 0361-9230</identifier><identifier>EISSN: 1873-2747</identifier><identifier>DOI: 10.1016/j.brainresbull.2019.03.004</identifier><identifier>PMID: 30898579</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biocompatible Materials ; Cell Differentiation - physiology ; Cell Survival ; Extracellular Matrix - physiology ; Humans ; Intercellular Signaling Peptides and Proteins - metabolism ; Neural Stem Cells - metabolism ; Stem Cell Niche - physiology</subject><ispartof>Brain research bulletin, 2019-05, Vol.148, p.25-33</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-cea53c7e6cfd8921e87526066d4d6b5b666aa2689c2f5c704cf348900cb105003</citedby><cites>FETCH-LOGICAL-c553t-cea53c7e6cfd8921e87526066d4d6b5b666aa2689c2f5c704cf348900cb105003</cites><orcidid>0000-0003-4832-5851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.brainresbull.2019.03.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30898579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilems, Thomas</creatorcontrib><creatorcontrib>Vardhan, Sangamithra</creatorcontrib><creatorcontrib>Wu, Siliang</creatorcontrib><creatorcontrib>Sakiyama-Elbert, Shelly</creatorcontrib><title>The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials</title><title>Brain research bulletin</title><addtitle>Brain Res Bull</addtitle><description>•Neural stem cell fate is influenced by local microenvironment factors.•Local microenvironment cues include mechanical and topographical signals.•Presentation and abundance of specific microenvironment ligands affect cell fate.•Knowing factors that affect neural stem cell fate will improve biomaterial design. Transplantation of stem cells is a promising potential therapy for central nervous system disease and injury. The capacity for self-renewal, proliferation of progenitor cells, and multi-lineage potential underscores the need for controlling stem cell fate. Furthermore, transplantation within a hostile environment can lead to significant cell death and limited therapeutic potential. Tissue-engineered materials have been developed to both regulate stem cell fate, increase transplanted cell viability, and improve therapeutic outcomes. Traditionally, regulation of stem cell differentiation has been driven through soluble signals, such as growth factors. While these signals are important, insoluble factors from the local microenvironment or extracellular matrix (ECM) molecules also contribute to stem cell activity and fate. Understanding the microenvironment factors that influence stem cell fate, such as mechanical properties, topography, and presentation of specific ECM ligands, is necessary for designing improved biomaterials. Here we review some of the microenvironment factors that regulate stem cell fate and how they can be incorporated into biomaterials as part of potential CNS therapies.</description><subject>Animals</subject><subject>Biocompatible Materials</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Survival</subject><subject>Extracellular Matrix - physiology</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Neural Stem Cells - metabolism</subject><subject>Stem Cell Niche - physiology</subject><issn>0361-9230</issn><issn>1873-2747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1TAQhS0EopfCX0AWKzYJYzt2EhZIqDylSmzK2nKcSa-vHLvYyaX99zi6pSo7VrOYc848PkLeMKgZMPXuUA_JuJAwD6v3NQfW1yBqgOYJ2bGuFRVvm_Yp2YFQrOq5gDPyIucDAKhOqufkTEDXd7Ltd-Tuao_UhcmvGCzSONHZ2RQxHF2KYcawUBNGirdLMha9X71JdDZLcrd0jh7t6jGXADomd3ThmgZck_E0LzjTzUAnsyD97ZZ9EQ0uFi8mZ3x-SZ5NpeCr-3pOfn75fHXxrbr88fX7xcfLykoplsqikcK2qOw0dj1n2LWSK1BqbEY1yEEpZQxXXW_5JG0LjZ1E0_UAdmAgAcQ5-XDKvVmHGUdbTioL6pvkZpPudDRO_9sJbq-v41GrpueSyxLw9j4gxV8r5kXPLm-nmYBxzZqzXknOWrFJ35-k5YU5J5wexjDQGzt90I_Z6Y2dBqELu2J-_XjRB-tfWEXw6STA8q6jw6SzdRu20SW0ix6j-585fwAxEbZb</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Wilems, Thomas</creator><creator>Vardhan, Sangamithra</creator><creator>Wu, Siliang</creator><creator>Sakiyama-Elbert, Shelly</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4832-5851</orcidid></search><sort><creationdate>20190501</creationdate><title>The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials</title><author>Wilems, Thomas ; Vardhan, Sangamithra ; Wu, Siliang ; Sakiyama-Elbert, Shelly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-cea53c7e6cfd8921e87526066d4d6b5b666aa2689c2f5c704cf348900cb105003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biocompatible Materials</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Survival</topic><topic>Extracellular Matrix - physiology</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Neural Stem Cells - metabolism</topic><topic>Stem Cell Niche - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilems, Thomas</creatorcontrib><creatorcontrib>Vardhan, Sangamithra</creatorcontrib><creatorcontrib>Wu, Siliang</creatorcontrib><creatorcontrib>Sakiyama-Elbert, Shelly</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain research bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilems, Thomas</au><au>Vardhan, Sangamithra</au><au>Wu, Siliang</au><au>Sakiyama-Elbert, Shelly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials</atitle><jtitle>Brain research bulletin</jtitle><addtitle>Brain Res Bull</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>148</volume><spage>25</spage><epage>33</epage><pages>25-33</pages><issn>0361-9230</issn><eissn>1873-2747</eissn><abstract>•Neural stem cell fate is influenced by local microenvironment factors.•Local microenvironment cues include mechanical and topographical signals.•Presentation and abundance of specific microenvironment ligands affect cell fate.•Knowing factors that affect neural stem cell fate will improve biomaterial design. Transplantation of stem cells is a promising potential therapy for central nervous system disease and injury. The capacity for self-renewal, proliferation of progenitor cells, and multi-lineage potential underscores the need for controlling stem cell fate. Furthermore, transplantation within a hostile environment can lead to significant cell death and limited therapeutic potential. Tissue-engineered materials have been developed to both regulate stem cell fate, increase transplanted cell viability, and improve therapeutic outcomes. Traditionally, regulation of stem cell differentiation has been driven through soluble signals, such as growth factors. While these signals are important, insoluble factors from the local microenvironment or extracellular matrix (ECM) molecules also contribute to stem cell activity and fate. Understanding the microenvironment factors that influence stem cell fate, such as mechanical properties, topography, and presentation of specific ECM ligands, is necessary for designing improved biomaterials. Here we review some of the microenvironment factors that regulate stem cell fate and how they can be incorporated into biomaterials as part of potential CNS therapies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30898579</pmid><doi>10.1016/j.brainresbull.2019.03.004</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4832-5851</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-9230
ispartof Brain research bulletin, 2019-05, Vol.148, p.25-33
issn 0361-9230
1873-2747
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6492525
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Biocompatible Materials
Cell Differentiation - physiology
Cell Survival
Extracellular Matrix - physiology
Humans
Intercellular Signaling Peptides and Proteins - metabolism
Neural Stem Cells - metabolism
Stem Cell Niche - physiology
title The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20microenvironment%20and%20extracellular%20matrix%20molecules%20in%20driving%20neural%20stem%20cell%20fate%20within%20biomaterials&rft.jtitle=Brain%20research%20bulletin&rft.au=Wilems,%20Thomas&rft.date=2019-05-01&rft.volume=148&rft.spage=25&rft.epage=33&rft.pages=25-33&rft.issn=0361-9230&rft.eissn=1873-2747&rft_id=info:doi/10.1016/j.brainresbull.2019.03.004&rft_dat=%3Cproquest_pubme%3E2196521735%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196521735&rft_id=info:pmid/30898579&rft_els_id=S0361923018310074&rfr_iscdi=true