Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation‐reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus
Summary Aims Estrogens play pivotal roles in hippocampal synaptic plasticity through nuclear receptors (nERs; including ERα and ERβ) and the membrane receptor (mER; also called GPR30), but the underlying mechanism and the contributions of nERs and mER remain unclear. Mammalian target of rapamycin co...
Gespeichert in:
Veröffentlicht in: | CNS neuroscience & therapeutics 2018-06, Vol.24 (6), p.495-507 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 507 |
---|---|
container_issue | 6 |
container_start_page | 495 |
container_title | CNS neuroscience & therapeutics |
container_volume | 24 |
creator | Xing, Fang‐Zhou Zhao, Yan‐Gang Zhang, Yuan‐Yuan He, Li Zhao, Ji‐Kai Liu, Meng‐Ying Liu, Yan Zhang, Ji‐Qiang |
description | Summary
Aims
Estrogens play pivotal roles in hippocampal synaptic plasticity through nuclear receptors (nERs; including ERα and ERβ) and the membrane receptor (mER; also called GPR30), but the underlying mechanism and the contributions of nERs and mER remain unclear. Mammalian target of rapamycin complex 2 (mTORC2) is involved in actin cytoskeleton polymerization and long‐term memory, but whether mTORC2 is involved in the regulation of hippocampal synaptic plasticity by ERs is unclear.
Methods
We treated animals with nER antagonists (MPP/PHTPP) or the mER antagonist (G15) alone or in combination with A‐443654, an activator of mTORC2. Then, we examined the changes in hippocampal SRC‐1 expression, mTORC2 signaling (rictor and phospho‐AKTSer473), actin polymerization (phospho‐cofilin and profilin‐1), synaptic protein expression (GluR1, PSD95, spinophilin, and synaptophysin), CA1 spine density, and synapse density.
Results
All of the examined parameters except synaptophysin expression were significantly decreased by MPP/PHTPP and G15 treatment. MPP/PHTPP and G15 induced a similar decrease in most parameters except p‐cofilin, GluR1, and spinophilin expression. The ER antagonist‐induced decreases in these parameters were significantly reversed by mTORC2 activation, except for the change in SRC‐1, rictor, and synaptophysin expression.
Conclusions
nERs and mER contribute similarly to the changes in proteins and structures associated with synaptic plasticity, and mTORC2 may be a novel target of hippocampal‐dependent dementia such as Alzheimer's disease as proposed by previous studies. |
doi_str_mv | 10.1111/cns.12806 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6490049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989598844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4096-f261813a909c4720eb627092dfe706a80493f06b67e4ac759f8b397ced3ac8263</originalsourceid><addsrcrecordid>eNpdUstuEzEUtRCIlsCCH0CW2LBJ67Fn_NggoYiXVLUSlLXl8dwkrmbswfYEwopP4Hf4Hb4ET1oiwBtf-TzuwxehpxU5q8o5tz6dVVQSfg-dVqJplo2q1f1jzMgJepTSDSGcSiUfohOqWEMbIk7Rz8vJ9mAiNr7DAwxtNB4wpBzDBjyOYGHMYYaz2QTvUk7Y-W6ygJMbXF-Uw_XVhxXFxma3M9kF_-v7jwg7iMm1PWC7NX4DswqnvTdjdhaPMWQoD_B1jJBS0RzyzxYej6HfDxDdt4PZrMtbwEOYEuCtG8dgzTBO6TF6sDZ9gid39wJ9evP6evVueXH19v3q1cXS1kTx5ZrySlbMKKJsLSiBllNBFO3WIAg3ktSKrQlvuYDaWNGotWyZEhY6ZqyknC3Qy1vfcWoH6Cz4HE2vx-gGE_c6GKf_Rbzb6k3YaV4rMrsv0Is7gxg-T2W0enDJQt-XSZemdKWkapSUdV2oz_-j3oQp-tKepoQJxmhNRWE9-7uiYyl_frUQzm8JX1wP-yNeET2viy7rog_roleXHw8B-w0Xyrjs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037332427</pqid></control><display><type>article</type><title>Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation‐reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus</title><source>Wiley Online Library Open Access</source><creator>Xing, Fang‐Zhou ; Zhao, Yan‐Gang ; Zhang, Yuan‐Yuan ; He, Li ; Zhao, Ji‐Kai ; Liu, Meng‐Ying ; Liu, Yan ; Zhang, Ji‐Qiang</creator><creatorcontrib>Xing, Fang‐Zhou ; Zhao, Yan‐Gang ; Zhang, Yuan‐Yuan ; He, Li ; Zhao, Ji‐Kai ; Liu, Meng‐Ying ; Liu, Yan ; Zhang, Ji‐Qiang</creatorcontrib><description>Summary
Aims
Estrogens play pivotal roles in hippocampal synaptic plasticity through nuclear receptors (nERs; including ERα and ERβ) and the membrane receptor (mER; also called GPR30), but the underlying mechanism and the contributions of nERs and mER remain unclear. Mammalian target of rapamycin complex 2 (mTORC2) is involved in actin cytoskeleton polymerization and long‐term memory, but whether mTORC2 is involved in the regulation of hippocampal synaptic plasticity by ERs is unclear.
Methods
We treated animals with nER antagonists (MPP/PHTPP) or the mER antagonist (G15) alone or in combination with A‐443654, an activator of mTORC2. Then, we examined the changes in hippocampal SRC‐1 expression, mTORC2 signaling (rictor and phospho‐AKTSer473), actin polymerization (phospho‐cofilin and profilin‐1), synaptic protein expression (GluR1, PSD95, spinophilin, and synaptophysin), CA1 spine density, and synapse density.
Results
All of the examined parameters except synaptophysin expression were significantly decreased by MPP/PHTPP and G15 treatment. MPP/PHTPP and G15 induced a similar decrease in most parameters except p‐cofilin, GluR1, and spinophilin expression. The ER antagonist‐induced decreases in these parameters were significantly reversed by mTORC2 activation, except for the change in SRC‐1, rictor, and synaptophysin expression.
Conclusions
nERs and mER contribute similarly to the changes in proteins and structures associated with synaptic plasticity, and mTORC2 may be a novel target of hippocampal‐dependent dementia such as Alzheimer's disease as proposed by previous studies.</description><identifier>ISSN: 1755-5930</identifier><identifier>EISSN: 1755-5949</identifier><identifier>DOI: 10.1111/cns.12806</identifier><identifier>PMID: 29352507</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Actin ; actin polymerization ; Actins - metabolism ; Alzheimer's disease ; Animals ; Benzodioxoles - pharmacology ; Cofilin ; Cytoskeleton ; Dementia disorders ; Enzyme Inhibitors - pharmacology ; Estrogen Receptor Antagonists - pharmacology ; Estrogen receptors ; Female ; Glutamic acid receptors (ionotropic) ; Hippocampal plasticity ; Hippocampus ; Hippocampus - drug effects ; Indazoles - pharmacology ; Indoles - pharmacology ; Mechanistic Target of Rapamycin Complex 2 - antagonists & inhibitors ; Mechanistic Target of Rapamycin Complex 2 - metabolism ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron, Transmission ; mTORC2 ; Nerve Tissue Proteins - metabolism ; Neurodegenerative diseases ; Nuclear Receptor Coactivator 1 - metabolism ; Nuclear receptors ; Original ; Polymerization ; Polymerization - drug effects ; Postsynaptic density proteins ; Profilin ; Protein expression ; Pyrazoles - pharmacology ; Pyrimidines - pharmacology ; Quinolines - pharmacology ; Rapamycin ; Signal Transduction - drug effects ; Silver Staining ; Spinophilin ; Src protein ; Synapses ; Synapses - metabolism ; Synapses - ultrastructure ; Synaptic density ; Synaptic plasticity ; Synaptophysin ; TOR protein</subject><ispartof>CNS neuroscience & therapeutics, 2018-06, Vol.24 (6), p.495-507</ispartof><rights>2018 John Wiley & Sons Ltd</rights><rights>2018 John Wiley & Sons Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4096-f261813a909c4720eb627092dfe706a80493f06b67e4ac759f8b397ced3ac8263</citedby><orcidid>0000-0002-1905-8750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6490049/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6490049/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcns.12806$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29352507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Fang‐Zhou</creatorcontrib><creatorcontrib>Zhao, Yan‐Gang</creatorcontrib><creatorcontrib>Zhang, Yuan‐Yuan</creatorcontrib><creatorcontrib>He, Li</creatorcontrib><creatorcontrib>Zhao, Ji‐Kai</creatorcontrib><creatorcontrib>Liu, Meng‐Ying</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Zhang, Ji‐Qiang</creatorcontrib><title>Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation‐reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus</title><title>CNS neuroscience & therapeutics</title><addtitle>CNS Neurosci Ther</addtitle><description>Summary
Aims
Estrogens play pivotal roles in hippocampal synaptic plasticity through nuclear receptors (nERs; including ERα and ERβ) and the membrane receptor (mER; also called GPR30), but the underlying mechanism and the contributions of nERs and mER remain unclear. Mammalian target of rapamycin complex 2 (mTORC2) is involved in actin cytoskeleton polymerization and long‐term memory, but whether mTORC2 is involved in the regulation of hippocampal synaptic plasticity by ERs is unclear.
Methods
We treated animals with nER antagonists (MPP/PHTPP) or the mER antagonist (G15) alone or in combination with A‐443654, an activator of mTORC2. Then, we examined the changes in hippocampal SRC‐1 expression, mTORC2 signaling (rictor and phospho‐AKTSer473), actin polymerization (phospho‐cofilin and profilin‐1), synaptic protein expression (GluR1, PSD95, spinophilin, and synaptophysin), CA1 spine density, and synapse density.
Results
All of the examined parameters except synaptophysin expression were significantly decreased by MPP/PHTPP and G15 treatment. MPP/PHTPP and G15 induced a similar decrease in most parameters except p‐cofilin, GluR1, and spinophilin expression. The ER antagonist‐induced decreases in these parameters were significantly reversed by mTORC2 activation, except for the change in SRC‐1, rictor, and synaptophysin expression.
Conclusions
nERs and mER contribute similarly to the changes in proteins and structures associated with synaptic plasticity, and mTORC2 may be a novel target of hippocampal‐dependent dementia such as Alzheimer's disease as proposed by previous studies.</description><subject>Actin</subject><subject>actin polymerization</subject><subject>Actins - metabolism</subject><subject>Alzheimer's disease</subject><subject>Animals</subject><subject>Benzodioxoles - pharmacology</subject><subject>Cofilin</subject><subject>Cytoskeleton</subject><subject>Dementia disorders</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Estrogen Receptor Antagonists - pharmacology</subject><subject>Estrogen receptors</subject><subject>Female</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Hippocampal plasticity</subject><subject>Hippocampus</subject><subject>Hippocampus - drug effects</subject><subject>Indazoles - pharmacology</subject><subject>Indoles - pharmacology</subject><subject>Mechanistic Target of Rapamycin Complex 2 - antagonists & inhibitors</subject><subject>Mechanistic Target of Rapamycin Complex 2 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy, Electron, Transmission</subject><subject>mTORC2</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurodegenerative diseases</subject><subject>Nuclear Receptor Coactivator 1 - metabolism</subject><subject>Nuclear receptors</subject><subject>Original</subject><subject>Polymerization</subject><subject>Polymerization - drug effects</subject><subject>Postsynaptic density proteins</subject><subject>Profilin</subject><subject>Protein expression</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrimidines - pharmacology</subject><subject>Quinolines - pharmacology</subject><subject>Rapamycin</subject><subject>Signal Transduction - drug effects</subject><subject>Silver Staining</subject><subject>Spinophilin</subject><subject>Src protein</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synapses - ultrastructure</subject><subject>Synaptic density</subject><subject>Synaptic plasticity</subject><subject>Synaptophysin</subject><subject>TOR protein</subject><issn>1755-5930</issn><issn>1755-5949</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUstuEzEUtRCIlsCCH0CW2LBJ67Fn_NggoYiXVLUSlLXl8dwkrmbswfYEwopP4Hf4Hb4ET1oiwBtf-TzuwxehpxU5q8o5tz6dVVQSfg-dVqJplo2q1f1jzMgJepTSDSGcSiUfohOqWEMbIk7Rz8vJ9mAiNr7DAwxtNB4wpBzDBjyOYGHMYYaz2QTvUk7Y-W6ygJMbXF-Uw_XVhxXFxma3M9kF_-v7jwg7iMm1PWC7NX4DswqnvTdjdhaPMWQoD_B1jJBS0RzyzxYej6HfDxDdt4PZrMtbwEOYEuCtG8dgzTBO6TF6sDZ9gid39wJ9evP6evVueXH19v3q1cXS1kTx5ZrySlbMKKJsLSiBllNBFO3WIAg3ktSKrQlvuYDaWNGotWyZEhY6ZqyknC3Qy1vfcWoH6Cz4HE2vx-gGE_c6GKf_Rbzb6k3YaV4rMrsv0Is7gxg-T2W0enDJQt-XSZemdKWkapSUdV2oz_-j3oQp-tKepoQJxmhNRWE9-7uiYyl_frUQzm8JX1wP-yNeET2viy7rog_roleXHw8B-w0Xyrjs</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Xing, Fang‐Zhou</creator><creator>Zhao, Yan‐Gang</creator><creator>Zhang, Yuan‐Yuan</creator><creator>He, Li</creator><creator>Zhao, Ji‐Kai</creator><creator>Liu, Meng‐Ying</creator><creator>Liu, Yan</creator><creator>Zhang, Ji‐Qiang</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1905-8750</orcidid></search><sort><creationdate>201806</creationdate><title>Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation‐reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus</title><author>Xing, Fang‐Zhou ; Zhao, Yan‐Gang ; Zhang, Yuan‐Yuan ; He, Li ; Zhao, Ji‐Kai ; Liu, Meng‐Ying ; Liu, Yan ; Zhang, Ji‐Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4096-f261813a909c4720eb627092dfe706a80493f06b67e4ac759f8b397ced3ac8263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actin</topic><topic>actin polymerization</topic><topic>Actins - metabolism</topic><topic>Alzheimer's disease</topic><topic>Animals</topic><topic>Benzodioxoles - pharmacology</topic><topic>Cofilin</topic><topic>Cytoskeleton</topic><topic>Dementia disorders</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Estrogen Receptor Antagonists - pharmacology</topic><topic>Estrogen receptors</topic><topic>Female</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Hippocampal plasticity</topic><topic>Hippocampus</topic><topic>Hippocampus - drug effects</topic><topic>Indazoles - pharmacology</topic><topic>Indoles - pharmacology</topic><topic>Mechanistic Target of Rapamycin Complex 2 - antagonists & inhibitors</topic><topic>Mechanistic Target of Rapamycin Complex 2 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy, Electron, Transmission</topic><topic>mTORC2</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurodegenerative diseases</topic><topic>Nuclear Receptor Coactivator 1 - metabolism</topic><topic>Nuclear receptors</topic><topic>Original</topic><topic>Polymerization</topic><topic>Polymerization - drug effects</topic><topic>Postsynaptic density proteins</topic><topic>Profilin</topic><topic>Protein expression</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrimidines - pharmacology</topic><topic>Quinolines - pharmacology</topic><topic>Rapamycin</topic><topic>Signal Transduction - drug effects</topic><topic>Silver Staining</topic><topic>Spinophilin</topic><topic>Src protein</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synapses - ultrastructure</topic><topic>Synaptic density</topic><topic>Synaptic plasticity</topic><topic>Synaptophysin</topic><topic>TOR protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Fang‐Zhou</creatorcontrib><creatorcontrib>Zhao, Yan‐Gang</creatorcontrib><creatorcontrib>Zhang, Yuan‐Yuan</creatorcontrib><creatorcontrib>He, Li</creatorcontrib><creatorcontrib>Zhao, Ji‐Kai</creatorcontrib><creatorcontrib>Liu, Meng‐Ying</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Zhang, Ji‐Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>CNS neuroscience & therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xing, Fang‐Zhou</au><au>Zhao, Yan‐Gang</au><au>Zhang, Yuan‐Yuan</au><au>He, Li</au><au>Zhao, Ji‐Kai</au><au>Liu, Meng‐Ying</au><au>Liu, Yan</au><au>Zhang, Ji‐Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation‐reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus</atitle><jtitle>CNS neuroscience & therapeutics</jtitle><addtitle>CNS Neurosci Ther</addtitle><date>2018-06</date><risdate>2018</risdate><volume>24</volume><issue>6</issue><spage>495</spage><epage>507</epage><pages>495-507</pages><issn>1755-5930</issn><eissn>1755-5949</eissn><abstract>Summary
Aims
Estrogens play pivotal roles in hippocampal synaptic plasticity through nuclear receptors (nERs; including ERα and ERβ) and the membrane receptor (mER; also called GPR30), but the underlying mechanism and the contributions of nERs and mER remain unclear. Mammalian target of rapamycin complex 2 (mTORC2) is involved in actin cytoskeleton polymerization and long‐term memory, but whether mTORC2 is involved in the regulation of hippocampal synaptic plasticity by ERs is unclear.
Methods
We treated animals with nER antagonists (MPP/PHTPP) or the mER antagonist (G15) alone or in combination with A‐443654, an activator of mTORC2. Then, we examined the changes in hippocampal SRC‐1 expression, mTORC2 signaling (rictor and phospho‐AKTSer473), actin polymerization (phospho‐cofilin and profilin‐1), synaptic protein expression (GluR1, PSD95, spinophilin, and synaptophysin), CA1 spine density, and synapse density.
Results
All of the examined parameters except synaptophysin expression were significantly decreased by MPP/PHTPP and G15 treatment. MPP/PHTPP and G15 induced a similar decrease in most parameters except p‐cofilin, GluR1, and spinophilin expression. The ER antagonist‐induced decreases in these parameters were significantly reversed by mTORC2 activation, except for the change in SRC‐1, rictor, and synaptophysin expression.
Conclusions
nERs and mER contribute similarly to the changes in proteins and structures associated with synaptic plasticity, and mTORC2 may be a novel target of hippocampal‐dependent dementia such as Alzheimer's disease as proposed by previous studies.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>29352507</pmid><doi>10.1111/cns.12806</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1905-8750</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1755-5930 |
ispartof | CNS neuroscience & therapeutics, 2018-06, Vol.24 (6), p.495-507 |
issn | 1755-5930 1755-5949 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6490049 |
source | Wiley Online Library Open Access |
subjects | Actin actin polymerization Actins - metabolism Alzheimer's disease Animals Benzodioxoles - pharmacology Cofilin Cytoskeleton Dementia disorders Enzyme Inhibitors - pharmacology Estrogen Receptor Antagonists - pharmacology Estrogen receptors Female Glutamic acid receptors (ionotropic) Hippocampal plasticity Hippocampus Hippocampus - drug effects Indazoles - pharmacology Indoles - pharmacology Mechanistic Target of Rapamycin Complex 2 - antagonists & inhibitors Mechanistic Target of Rapamycin Complex 2 - metabolism Mice Mice, Inbred C57BL Microscopy, Electron, Transmission mTORC2 Nerve Tissue Proteins - metabolism Neurodegenerative diseases Nuclear Receptor Coactivator 1 - metabolism Nuclear receptors Original Polymerization Polymerization - drug effects Postsynaptic density proteins Profilin Protein expression Pyrazoles - pharmacology Pyrimidines - pharmacology Quinolines - pharmacology Rapamycin Signal Transduction - drug effects Silver Staining Spinophilin Src protein Synapses Synapses - metabolism Synapses - ultrastructure Synaptic density Synaptic plasticity Synaptophysin TOR protein |
title | Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation‐reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20and%20membrane%20estrogen%20receptor%20antagonists%20induce%20similar%20mTORC2%20activation%E2%80%90reversible%20changes%20in%20synaptic%20protein%20expression%20and%20actin%20polymerization%20in%20the%20mouse%20hippocampus&rft.jtitle=CNS%20neuroscience%20&%20therapeutics&rft.au=Xing,%20Fang%E2%80%90Zhou&rft.date=2018-06&rft.volume=24&rft.issue=6&rft.spage=495&rft.epage=507&rft.pages=495-507&rft.issn=1755-5930&rft.eissn=1755-5949&rft_id=info:doi/10.1111/cns.12806&rft_dat=%3Cproquest_24P%3E1989598844%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037332427&rft_id=info:pmid/29352507&rfr_iscdi=true |