Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation‐reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus

Summary Aims Estrogens play pivotal roles in hippocampal synaptic plasticity through nuclear receptors (nERs; including ERα and ERβ) and the membrane receptor (mER; also called GPR30), but the underlying mechanism and the contributions of nERs and mER remain unclear. Mammalian target of rapamycin co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CNS neuroscience & therapeutics 2018-06, Vol.24 (6), p.495-507
Hauptverfasser: Xing, Fang‐Zhou, Zhao, Yan‐Gang, Zhang, Yuan‐Yuan, He, Li, Zhao, Ji‐Kai, Liu, Meng‐Ying, Liu, Yan, Zhang, Ji‐Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 6
container_start_page 495
container_title CNS neuroscience & therapeutics
container_volume 24
creator Xing, Fang‐Zhou
Zhao, Yan‐Gang
Zhang, Yuan‐Yuan
He, Li
Zhao, Ji‐Kai
Liu, Meng‐Ying
Liu, Yan
Zhang, Ji‐Qiang
description Summary Aims Estrogens play pivotal roles in hippocampal synaptic plasticity through nuclear receptors (nERs; including ERα and ERβ) and the membrane receptor (mER; also called GPR30), but the underlying mechanism and the contributions of nERs and mER remain unclear. Mammalian target of rapamycin complex 2 (mTORC2) is involved in actin cytoskeleton polymerization and long‐term memory, but whether mTORC2 is involved in the regulation of hippocampal synaptic plasticity by ERs is unclear. Methods We treated animals with nER antagonists (MPP/PHTPP) or the mER antagonist (G15) alone or in combination with A‐443654, an activator of mTORC2. Then, we examined the changes in hippocampal SRC‐1 expression, mTORC2 signaling (rictor and phospho‐AKTSer473), actin polymerization (phospho‐cofilin and profilin‐1), synaptic protein expression (GluR1, PSD95, spinophilin, and synaptophysin), CA1 spine density, and synapse density. Results All of the examined parameters except synaptophysin expression were significantly decreased by MPP/PHTPP and G15 treatment. MPP/PHTPP and G15 induced a similar decrease in most parameters except p‐cofilin, GluR1, and spinophilin expression. The ER antagonist‐induced decreases in these parameters were significantly reversed by mTORC2 activation, except for the change in SRC‐1, rictor, and synaptophysin expression. Conclusions nERs and mER contribute similarly to the changes in proteins and structures associated with synaptic plasticity, and mTORC2 may be a novel target of hippocampal‐dependent dementia such as Alzheimer's disease as proposed by previous studies.
doi_str_mv 10.1111/cns.12806
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6490049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989598844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4096-f261813a909c4720eb627092dfe706a80493f06b67e4ac759f8b397ced3ac8263</originalsourceid><addsrcrecordid>eNpdUstuEzEUtRCIlsCCH0CW2LBJ67Fn_NggoYiXVLUSlLXl8dwkrmbswfYEwopP4Hf4Hb4ET1oiwBtf-TzuwxehpxU5q8o5tz6dVVQSfg-dVqJplo2q1f1jzMgJepTSDSGcSiUfohOqWEMbIk7Rz8vJ9mAiNr7DAwxtNB4wpBzDBjyOYGHMYYaz2QTvUk7Y-W6ygJMbXF-Uw_XVhxXFxma3M9kF_-v7jwg7iMm1PWC7NX4DswqnvTdjdhaPMWQoD_B1jJBS0RzyzxYej6HfDxDdt4PZrMtbwEOYEuCtG8dgzTBO6TF6sDZ9gid39wJ9evP6evVueXH19v3q1cXS1kTx5ZrySlbMKKJsLSiBllNBFO3WIAg3ktSKrQlvuYDaWNGotWyZEhY6ZqyknC3Qy1vfcWoH6Cz4HE2vx-gGE_c6GKf_Rbzb6k3YaV4rMrsv0Is7gxg-T2W0enDJQt-XSZemdKWkapSUdV2oz_-j3oQp-tKepoQJxmhNRWE9-7uiYyl_frUQzm8JX1wP-yNeET2viy7rog_roleXHw8B-w0Xyrjs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037332427</pqid></control><display><type>article</type><title>Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation‐reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus</title><source>Wiley Online Library Open Access</source><creator>Xing, Fang‐Zhou ; Zhao, Yan‐Gang ; Zhang, Yuan‐Yuan ; He, Li ; Zhao, Ji‐Kai ; Liu, Meng‐Ying ; Liu, Yan ; Zhang, Ji‐Qiang</creator><creatorcontrib>Xing, Fang‐Zhou ; Zhao, Yan‐Gang ; Zhang, Yuan‐Yuan ; He, Li ; Zhao, Ji‐Kai ; Liu, Meng‐Ying ; Liu, Yan ; Zhang, Ji‐Qiang</creatorcontrib><description>Summary Aims Estrogens play pivotal roles in hippocampal synaptic plasticity through nuclear receptors (nERs; including ERα and ERβ) and the membrane receptor (mER; also called GPR30), but the underlying mechanism and the contributions of nERs and mER remain unclear. Mammalian target of rapamycin complex 2 (mTORC2) is involved in actin cytoskeleton polymerization and long‐term memory, but whether mTORC2 is involved in the regulation of hippocampal synaptic plasticity by ERs is unclear. Methods We treated animals with nER antagonists (MPP/PHTPP) or the mER antagonist (G15) alone or in combination with A‐443654, an activator of mTORC2. Then, we examined the changes in hippocampal SRC‐1 expression, mTORC2 signaling (rictor and phospho‐AKTSer473), actin polymerization (phospho‐cofilin and profilin‐1), synaptic protein expression (GluR1, PSD95, spinophilin, and synaptophysin), CA1 spine density, and synapse density. Results All of the examined parameters except synaptophysin expression were significantly decreased by MPP/PHTPP and G15 treatment. MPP/PHTPP and G15 induced a similar decrease in most parameters except p‐cofilin, GluR1, and spinophilin expression. The ER antagonist‐induced decreases in these parameters were significantly reversed by mTORC2 activation, except for the change in SRC‐1, rictor, and synaptophysin expression. Conclusions nERs and mER contribute similarly to the changes in proteins and structures associated with synaptic plasticity, and mTORC2 may be a novel target of hippocampal‐dependent dementia such as Alzheimer's disease as proposed by previous studies.</description><identifier>ISSN: 1755-5930</identifier><identifier>EISSN: 1755-5949</identifier><identifier>DOI: 10.1111/cns.12806</identifier><identifier>PMID: 29352507</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Actin ; actin polymerization ; Actins - metabolism ; Alzheimer's disease ; Animals ; Benzodioxoles - pharmacology ; Cofilin ; Cytoskeleton ; Dementia disorders ; Enzyme Inhibitors - pharmacology ; Estrogen Receptor Antagonists - pharmacology ; Estrogen receptors ; Female ; Glutamic acid receptors (ionotropic) ; Hippocampal plasticity ; Hippocampus ; Hippocampus - drug effects ; Indazoles - pharmacology ; Indoles - pharmacology ; Mechanistic Target of Rapamycin Complex 2 - antagonists &amp; inhibitors ; Mechanistic Target of Rapamycin Complex 2 - metabolism ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron, Transmission ; mTORC2 ; Nerve Tissue Proteins - metabolism ; Neurodegenerative diseases ; Nuclear Receptor Coactivator 1 - metabolism ; Nuclear receptors ; Original ; Polymerization ; Polymerization - drug effects ; Postsynaptic density proteins ; Profilin ; Protein expression ; Pyrazoles - pharmacology ; Pyrimidines - pharmacology ; Quinolines - pharmacology ; Rapamycin ; Signal Transduction - drug effects ; Silver Staining ; Spinophilin ; Src protein ; Synapses ; Synapses - metabolism ; Synapses - ultrastructure ; Synaptic density ; Synaptic plasticity ; Synaptophysin ; TOR protein</subject><ispartof>CNS neuroscience &amp; therapeutics, 2018-06, Vol.24 (6), p.495-507</ispartof><rights>2018 John Wiley &amp; Sons Ltd</rights><rights>2018 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4096-f261813a909c4720eb627092dfe706a80493f06b67e4ac759f8b397ced3ac8263</citedby><orcidid>0000-0002-1905-8750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6490049/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6490049/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcns.12806$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29352507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Fang‐Zhou</creatorcontrib><creatorcontrib>Zhao, Yan‐Gang</creatorcontrib><creatorcontrib>Zhang, Yuan‐Yuan</creatorcontrib><creatorcontrib>He, Li</creatorcontrib><creatorcontrib>Zhao, Ji‐Kai</creatorcontrib><creatorcontrib>Liu, Meng‐Ying</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Zhang, Ji‐Qiang</creatorcontrib><title>Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation‐reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus</title><title>CNS neuroscience &amp; therapeutics</title><addtitle>CNS Neurosci Ther</addtitle><description>Summary Aims Estrogens play pivotal roles in hippocampal synaptic plasticity through nuclear receptors (nERs; including ERα and ERβ) and the membrane receptor (mER; also called GPR30), but the underlying mechanism and the contributions of nERs and mER remain unclear. Mammalian target of rapamycin complex 2 (mTORC2) is involved in actin cytoskeleton polymerization and long‐term memory, but whether mTORC2 is involved in the regulation of hippocampal synaptic plasticity by ERs is unclear. Methods We treated animals with nER antagonists (MPP/PHTPP) or the mER antagonist (G15) alone or in combination with A‐443654, an activator of mTORC2. Then, we examined the changes in hippocampal SRC‐1 expression, mTORC2 signaling (rictor and phospho‐AKTSer473), actin polymerization (phospho‐cofilin and profilin‐1), synaptic protein expression (GluR1, PSD95, spinophilin, and synaptophysin), CA1 spine density, and synapse density. Results All of the examined parameters except synaptophysin expression were significantly decreased by MPP/PHTPP and G15 treatment. MPP/PHTPP and G15 induced a similar decrease in most parameters except p‐cofilin, GluR1, and spinophilin expression. The ER antagonist‐induced decreases in these parameters were significantly reversed by mTORC2 activation, except for the change in SRC‐1, rictor, and synaptophysin expression. Conclusions nERs and mER contribute similarly to the changes in proteins and structures associated with synaptic plasticity, and mTORC2 may be a novel target of hippocampal‐dependent dementia such as Alzheimer's disease as proposed by previous studies.</description><subject>Actin</subject><subject>actin polymerization</subject><subject>Actins - metabolism</subject><subject>Alzheimer's disease</subject><subject>Animals</subject><subject>Benzodioxoles - pharmacology</subject><subject>Cofilin</subject><subject>Cytoskeleton</subject><subject>Dementia disorders</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Estrogen Receptor Antagonists - pharmacology</subject><subject>Estrogen receptors</subject><subject>Female</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Hippocampal plasticity</subject><subject>Hippocampus</subject><subject>Hippocampus - drug effects</subject><subject>Indazoles - pharmacology</subject><subject>Indoles - pharmacology</subject><subject>Mechanistic Target of Rapamycin Complex 2 - antagonists &amp; inhibitors</subject><subject>Mechanistic Target of Rapamycin Complex 2 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy, Electron, Transmission</subject><subject>mTORC2</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurodegenerative diseases</subject><subject>Nuclear Receptor Coactivator 1 - metabolism</subject><subject>Nuclear receptors</subject><subject>Original</subject><subject>Polymerization</subject><subject>Polymerization - drug effects</subject><subject>Postsynaptic density proteins</subject><subject>Profilin</subject><subject>Protein expression</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrimidines - pharmacology</subject><subject>Quinolines - pharmacology</subject><subject>Rapamycin</subject><subject>Signal Transduction - drug effects</subject><subject>Silver Staining</subject><subject>Spinophilin</subject><subject>Src protein</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synapses - ultrastructure</subject><subject>Synaptic density</subject><subject>Synaptic plasticity</subject><subject>Synaptophysin</subject><subject>TOR protein</subject><issn>1755-5930</issn><issn>1755-5949</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUstuEzEUtRCIlsCCH0CW2LBJ67Fn_NggoYiXVLUSlLXl8dwkrmbswfYEwopP4Hf4Hb4ET1oiwBtf-TzuwxehpxU5q8o5tz6dVVQSfg-dVqJplo2q1f1jzMgJepTSDSGcSiUfohOqWEMbIk7Rz8vJ9mAiNr7DAwxtNB4wpBzDBjyOYGHMYYaz2QTvUk7Y-W6ygJMbXF-Uw_XVhxXFxma3M9kF_-v7jwg7iMm1PWC7NX4DswqnvTdjdhaPMWQoD_B1jJBS0RzyzxYej6HfDxDdt4PZrMtbwEOYEuCtG8dgzTBO6TF6sDZ9gid39wJ9evP6evVueXH19v3q1cXS1kTx5ZrySlbMKKJsLSiBllNBFO3WIAg3ktSKrQlvuYDaWNGotWyZEhY6ZqyknC3Qy1vfcWoH6Cz4HE2vx-gGE_c6GKf_Rbzb6k3YaV4rMrsv0Is7gxg-T2W0enDJQt-XSZemdKWkapSUdV2oz_-j3oQp-tKepoQJxmhNRWE9-7uiYyl_frUQzm8JX1wP-yNeET2viy7rog_roleXHw8B-w0Xyrjs</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Xing, Fang‐Zhou</creator><creator>Zhao, Yan‐Gang</creator><creator>Zhang, Yuan‐Yuan</creator><creator>He, Li</creator><creator>Zhao, Ji‐Kai</creator><creator>Liu, Meng‐Ying</creator><creator>Liu, Yan</creator><creator>Zhang, Ji‐Qiang</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1905-8750</orcidid></search><sort><creationdate>201806</creationdate><title>Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation‐reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus</title><author>Xing, Fang‐Zhou ; Zhao, Yan‐Gang ; Zhang, Yuan‐Yuan ; He, Li ; Zhao, Ji‐Kai ; Liu, Meng‐Ying ; Liu, Yan ; Zhang, Ji‐Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4096-f261813a909c4720eb627092dfe706a80493f06b67e4ac759f8b397ced3ac8263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actin</topic><topic>actin polymerization</topic><topic>Actins - metabolism</topic><topic>Alzheimer's disease</topic><topic>Animals</topic><topic>Benzodioxoles - pharmacology</topic><topic>Cofilin</topic><topic>Cytoskeleton</topic><topic>Dementia disorders</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Estrogen Receptor Antagonists - pharmacology</topic><topic>Estrogen receptors</topic><topic>Female</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Hippocampal plasticity</topic><topic>Hippocampus</topic><topic>Hippocampus - drug effects</topic><topic>Indazoles - pharmacology</topic><topic>Indoles - pharmacology</topic><topic>Mechanistic Target of Rapamycin Complex 2 - antagonists &amp; inhibitors</topic><topic>Mechanistic Target of Rapamycin Complex 2 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy, Electron, Transmission</topic><topic>mTORC2</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurodegenerative diseases</topic><topic>Nuclear Receptor Coactivator 1 - metabolism</topic><topic>Nuclear receptors</topic><topic>Original</topic><topic>Polymerization</topic><topic>Polymerization - drug effects</topic><topic>Postsynaptic density proteins</topic><topic>Profilin</topic><topic>Protein expression</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrimidines - pharmacology</topic><topic>Quinolines - pharmacology</topic><topic>Rapamycin</topic><topic>Signal Transduction - drug effects</topic><topic>Silver Staining</topic><topic>Spinophilin</topic><topic>Src protein</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synapses - ultrastructure</topic><topic>Synaptic density</topic><topic>Synaptic plasticity</topic><topic>Synaptophysin</topic><topic>TOR protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Fang‐Zhou</creatorcontrib><creatorcontrib>Zhao, Yan‐Gang</creatorcontrib><creatorcontrib>Zhang, Yuan‐Yuan</creatorcontrib><creatorcontrib>He, Li</creatorcontrib><creatorcontrib>Zhao, Ji‐Kai</creatorcontrib><creatorcontrib>Liu, Meng‐Ying</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Zhang, Ji‐Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>CNS neuroscience &amp; therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xing, Fang‐Zhou</au><au>Zhao, Yan‐Gang</au><au>Zhang, Yuan‐Yuan</au><au>He, Li</au><au>Zhao, Ji‐Kai</au><au>Liu, Meng‐Ying</au><au>Liu, Yan</au><au>Zhang, Ji‐Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation‐reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus</atitle><jtitle>CNS neuroscience &amp; therapeutics</jtitle><addtitle>CNS Neurosci Ther</addtitle><date>2018-06</date><risdate>2018</risdate><volume>24</volume><issue>6</issue><spage>495</spage><epage>507</epage><pages>495-507</pages><issn>1755-5930</issn><eissn>1755-5949</eissn><abstract>Summary Aims Estrogens play pivotal roles in hippocampal synaptic plasticity through nuclear receptors (nERs; including ERα and ERβ) and the membrane receptor (mER; also called GPR30), but the underlying mechanism and the contributions of nERs and mER remain unclear. Mammalian target of rapamycin complex 2 (mTORC2) is involved in actin cytoskeleton polymerization and long‐term memory, but whether mTORC2 is involved in the regulation of hippocampal synaptic plasticity by ERs is unclear. Methods We treated animals with nER antagonists (MPP/PHTPP) or the mER antagonist (G15) alone or in combination with A‐443654, an activator of mTORC2. Then, we examined the changes in hippocampal SRC‐1 expression, mTORC2 signaling (rictor and phospho‐AKTSer473), actin polymerization (phospho‐cofilin and profilin‐1), synaptic protein expression (GluR1, PSD95, spinophilin, and synaptophysin), CA1 spine density, and synapse density. Results All of the examined parameters except synaptophysin expression were significantly decreased by MPP/PHTPP and G15 treatment. MPP/PHTPP and G15 induced a similar decrease in most parameters except p‐cofilin, GluR1, and spinophilin expression. The ER antagonist‐induced decreases in these parameters were significantly reversed by mTORC2 activation, except for the change in SRC‐1, rictor, and synaptophysin expression. Conclusions nERs and mER contribute similarly to the changes in proteins and structures associated with synaptic plasticity, and mTORC2 may be a novel target of hippocampal‐dependent dementia such as Alzheimer's disease as proposed by previous studies.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29352507</pmid><doi>10.1111/cns.12806</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1905-8750</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1755-5930
ispartof CNS neuroscience & therapeutics, 2018-06, Vol.24 (6), p.495-507
issn 1755-5930
1755-5949
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6490049
source Wiley Online Library Open Access
subjects Actin
actin polymerization
Actins - metabolism
Alzheimer's disease
Animals
Benzodioxoles - pharmacology
Cofilin
Cytoskeleton
Dementia disorders
Enzyme Inhibitors - pharmacology
Estrogen Receptor Antagonists - pharmacology
Estrogen receptors
Female
Glutamic acid receptors (ionotropic)
Hippocampal plasticity
Hippocampus
Hippocampus - drug effects
Indazoles - pharmacology
Indoles - pharmacology
Mechanistic Target of Rapamycin Complex 2 - antagonists & inhibitors
Mechanistic Target of Rapamycin Complex 2 - metabolism
Mice
Mice, Inbred C57BL
Microscopy, Electron, Transmission
mTORC2
Nerve Tissue Proteins - metabolism
Neurodegenerative diseases
Nuclear Receptor Coactivator 1 - metabolism
Nuclear receptors
Original
Polymerization
Polymerization - drug effects
Postsynaptic density proteins
Profilin
Protein expression
Pyrazoles - pharmacology
Pyrimidines - pharmacology
Quinolines - pharmacology
Rapamycin
Signal Transduction - drug effects
Silver Staining
Spinophilin
Src protein
Synapses
Synapses - metabolism
Synapses - ultrastructure
Synaptic density
Synaptic plasticity
Synaptophysin
TOR protein
title Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation‐reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20and%20membrane%20estrogen%20receptor%20antagonists%20induce%20similar%20mTORC2%20activation%E2%80%90reversible%20changes%20in%20synaptic%20protein%20expression%20and%20actin%20polymerization%20in%20the%20mouse%20hippocampus&rft.jtitle=CNS%20neuroscience%20&%20therapeutics&rft.au=Xing,%20Fang%E2%80%90Zhou&rft.date=2018-06&rft.volume=24&rft.issue=6&rft.spage=495&rft.epage=507&rft.pages=495-507&rft.issn=1755-5930&rft.eissn=1755-5949&rft_id=info:doi/10.1111/cns.12806&rft_dat=%3Cproquest_24P%3E1989598844%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037332427&rft_id=info:pmid/29352507&rfr_iscdi=true