Androgen receptor dampens tissue factor expression via nuclear factor‐κB and early growth response protein 1

Essentials Androgen deprivation increases the rate of venous thromboembolism in prostate cancer patients. We characterized androgen receptor‐mediated tissue factor regulation in prostate epithelial cells. Androgen receptor is dampening tissue factor expression in prostate epithelial cells. Androgen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thrombosis and haemostasis 2018-04, Vol.16 (4), p.749-758
Hauptverfasser: Hoesel, B., Mussbacher, M., Dikorman, B., Salzmann, M., Assinger, A., Hell, L., Thaler, J., Basílio, J., Moser, B., Resch, U., Paar, H., Mackman, N., Schmid, J. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 758
container_issue 4
container_start_page 749
container_title Journal of thrombosis and haemostasis
container_volume 16
creator Hoesel, B.
Mussbacher, M.
Dikorman, B.
Salzmann, M.
Assinger, A.
Hell, L.
Thaler, J.
Basílio, J.
Moser, B.
Resch, U.
Paar, H.
Mackman, N.
Schmid, J. A.
description Essentials Androgen deprivation increases the rate of venous thromboembolism in prostate cancer patients. We characterized androgen receptor‐mediated tissue factor regulation in prostate epithelial cells. Androgen receptor is dampening tissue factor expression in prostate epithelial cells. Androgen deprivation could enhance tissue factor expression and raise venous thromboembolism rates. Summary Background Prostate cancer is one of the leading causes of cancer death in men. Advanced prostate cancer is usually treated by androgen deprivation therapy (ADT), which is aimed at reducing circulating testosterone levels to reduce cancer growth. There is growing evidence that ADT can increase the rate of venous thromboembolism (VTE) in prostate cancer patients. The tissue factor (TF) gene is one of the most important mediators of coagulation and VTE, but, so far, there are limited data on androgen receptor (AR)‐mediated TF gene expression. Objectives To characterize AR‐mediated TF regulation in vitro and in vivo. Methods We used the androgen‐dependent prostate cancer cell lines LNCaP and MyC‐CaP to test whether TF expression is regulated by AR. Furthermore, we cloned the TF gene promoter into a luciferase reporter vector to identify the transcription factor‐binding sites that mediate TF regulation downstream of AR. Finally, we used castration experiments in mice to characterize AR‐mediated TF regulation in vivo. Results TF is directly regulated by AR. In LNCaP cells, nuclear factor‐κB signaling and EGR1 mediate TF expression. By using castration experiments in mice, we could detect upregulation of TF and early growth response protein 1 mRNA and protein expression in prostate epithelial cells. Conclusion AR is crucial for dampening TF expression, which could be important for increased TF expression and TF‐positive microvesicle release in androgen‐deprived prostate cancer patients.
doi_str_mv 10.1111/jth.13971
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2023415296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4431-9f1f6767b5a31cb6efeef9fa812941a910de93a2a33af62dfb93dfc10e8968c93</originalsourceid><addsrcrecordid>eNp1kUtOwzAURS0EouUzYAPIEiMGpbGdJvEECSq-qsQExpbrPLepUjvYSUtnLIH1sAgWwUow9CMY4Imt946Or3QROiLRGQmnO6nHZ4TxlGyhNumxrJNmLNlevzljLbTn_SSKCO_RaBe1KI9pyihrI3thcmdHYLADBVVtHc7ltALjcV143wDWUn1P4aVy4H1hDZ4VEptGlSDdavv5-vbxfomlyXEYlgs8cnZej4PTV9Z4wJWzNRQGkwO0o2Xp4XB176On66vH_m1n8HBz178YdFQcM9LhmugkTdJhTzKihgloAM21zEiITiQnUQ6cSSoZkzqhuR5ylmtFIsh4kinO9tH50ls1wynkCkztZCkqV0ylWwgrC_F3Y4qxGNmZSOIs5XEWBCcrgbPPDfhaTGzjTMgsaERZTHqUJ4E6XVLKWe8d6M0PJBLf3YjQjfjpJrDHvyNtyHUZAegugXlRwuJ_k7h_vF0qvwDK-J3m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023415296</pqid></control><display><type>article</type><title>Androgen receptor dampens tissue factor expression via nuclear factor‐κB and early growth response protein 1</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Hoesel, B. ; Mussbacher, M. ; Dikorman, B. ; Salzmann, M. ; Assinger, A. ; Hell, L. ; Thaler, J. ; Basílio, J. ; Moser, B. ; Resch, U. ; Paar, H. ; Mackman, N. ; Schmid, J. A.</creator><creatorcontrib>Hoesel, B. ; Mussbacher, M. ; Dikorman, B. ; Salzmann, M. ; Assinger, A. ; Hell, L. ; Thaler, J. ; Basílio, J. ; Moser, B. ; Resch, U. ; Paar, H. ; Mackman, N. ; Schmid, J. A.</creatorcontrib><description>Essentials Androgen deprivation increases the rate of venous thromboembolism in prostate cancer patients. We characterized androgen receptor‐mediated tissue factor regulation in prostate epithelial cells. Androgen receptor is dampening tissue factor expression in prostate epithelial cells. Androgen deprivation could enhance tissue factor expression and raise venous thromboembolism rates. Summary Background Prostate cancer is one of the leading causes of cancer death in men. Advanced prostate cancer is usually treated by androgen deprivation therapy (ADT), which is aimed at reducing circulating testosterone levels to reduce cancer growth. There is growing evidence that ADT can increase the rate of venous thromboembolism (VTE) in prostate cancer patients. The tissue factor (TF) gene is one of the most important mediators of coagulation and VTE, but, so far, there are limited data on androgen receptor (AR)‐mediated TF gene expression. Objectives To characterize AR‐mediated TF regulation in vitro and in vivo. Methods We used the androgen‐dependent prostate cancer cell lines LNCaP and MyC‐CaP to test whether TF expression is regulated by AR. Furthermore, we cloned the TF gene promoter into a luciferase reporter vector to identify the transcription factor‐binding sites that mediate TF regulation downstream of AR. Finally, we used castration experiments in mice to characterize AR‐mediated TF regulation in vivo. Results TF is directly regulated by AR. In LNCaP cells, nuclear factor‐κB signaling and EGR1 mediate TF expression. By using castration experiments in mice, we could detect upregulation of TF and early growth response protein 1 mRNA and protein expression in prostate epithelial cells. Conclusion AR is crucial for dampening TF expression, which could be important for increased TF expression and TF‐positive microvesicle release in androgen‐deprived prostate cancer patients.</description><identifier>ISSN: 1538-7933</identifier><identifier>ISSN: 1538-7836</identifier><identifier>EISSN: 1538-7836</identifier><identifier>DOI: 10.1111/jth.13971</identifier><identifier>PMID: 29427323</identifier><language>eng</language><publisher>England: Elsevier Limited</publisher><subject>Androgen Antagonists - adverse effects ; androgen receptor ; Androgen receptors ; Androgens ; Androgens - pharmacology ; Animals ; Binding Sites ; Castration ; Cell Line, Tumor ; COAGULATION ; Dihydrotestosterone - pharmacology ; Down-Regulation ; early growth response protein 1 ; Early Growth Response Protein 1 - metabolism ; EGR-1 protein ; Epithelial cells ; Epithelial Cells - metabolism ; Gene expression ; Humans ; Male ; Mice, Inbred C57BL ; Myc protein ; NF-kappa B - metabolism ; NF‐κB ; Orchiectomy ; Original ; Promoter Regions, Genetic ; Prostate - metabolism ; Prostate cancer ; Prostatic Neoplasms - drug therapy ; Prostatic Neoplasms - genetics ; Prostatic Neoplasms - metabolism ; Protein Binding ; Proteins ; Receptors, Androgen - drug effects ; Receptors, Androgen - metabolism ; Signal Transduction ; Testosterone ; Thromboembolism ; Thromboplastin - genetics ; Thromboplastin - metabolism ; Tissue factor ; Tumor cell lines ; venous thromboembolism ; Venous Thromboembolism - chemically induced ; Venous Thromboembolism - genetics ; Venous Thromboembolism - metabolism</subject><ispartof>Journal of thrombosis and haemostasis, 2018-04, Vol.16 (4), p.749-758</ispartof><rights>2018 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.</rights><rights>2018 International Society on Thrombosis and Haemostasis.</rights><rights>Copyright © 2018 International Society on Thrombosis and Haemostasis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4431-9f1f6767b5a31cb6efeef9fa812941a910de93a2a33af62dfb93dfc10e8968c93</citedby><cites>FETCH-LOGICAL-c4431-9f1f6767b5a31cb6efeef9fa812941a910de93a2a33af62dfb93dfc10e8968c93</cites><orcidid>0000-0002-7025-081X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29427323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoesel, B.</creatorcontrib><creatorcontrib>Mussbacher, M.</creatorcontrib><creatorcontrib>Dikorman, B.</creatorcontrib><creatorcontrib>Salzmann, M.</creatorcontrib><creatorcontrib>Assinger, A.</creatorcontrib><creatorcontrib>Hell, L.</creatorcontrib><creatorcontrib>Thaler, J.</creatorcontrib><creatorcontrib>Basílio, J.</creatorcontrib><creatorcontrib>Moser, B.</creatorcontrib><creatorcontrib>Resch, U.</creatorcontrib><creatorcontrib>Paar, H.</creatorcontrib><creatorcontrib>Mackman, N.</creatorcontrib><creatorcontrib>Schmid, J. A.</creatorcontrib><title>Androgen receptor dampens tissue factor expression via nuclear factor‐κB and early growth response protein 1</title><title>Journal of thrombosis and haemostasis</title><addtitle>J Thromb Haemost</addtitle><description>Essentials Androgen deprivation increases the rate of venous thromboembolism in prostate cancer patients. We characterized androgen receptor‐mediated tissue factor regulation in prostate epithelial cells. Androgen receptor is dampening tissue factor expression in prostate epithelial cells. Androgen deprivation could enhance tissue factor expression and raise venous thromboembolism rates. Summary Background Prostate cancer is one of the leading causes of cancer death in men. Advanced prostate cancer is usually treated by androgen deprivation therapy (ADT), which is aimed at reducing circulating testosterone levels to reduce cancer growth. There is growing evidence that ADT can increase the rate of venous thromboembolism (VTE) in prostate cancer patients. The tissue factor (TF) gene is one of the most important mediators of coagulation and VTE, but, so far, there are limited data on androgen receptor (AR)‐mediated TF gene expression. Objectives To characterize AR‐mediated TF regulation in vitro and in vivo. Methods We used the androgen‐dependent prostate cancer cell lines LNCaP and MyC‐CaP to test whether TF expression is regulated by AR. Furthermore, we cloned the TF gene promoter into a luciferase reporter vector to identify the transcription factor‐binding sites that mediate TF regulation downstream of AR. Finally, we used castration experiments in mice to characterize AR‐mediated TF regulation in vivo. Results TF is directly regulated by AR. In LNCaP cells, nuclear factor‐κB signaling and EGR1 mediate TF expression. By using castration experiments in mice, we could detect upregulation of TF and early growth response protein 1 mRNA and protein expression in prostate epithelial cells. Conclusion AR is crucial for dampening TF expression, which could be important for increased TF expression and TF‐positive microvesicle release in androgen‐deprived prostate cancer patients.</description><subject>Androgen Antagonists - adverse effects</subject><subject>androgen receptor</subject><subject>Androgen receptors</subject><subject>Androgens</subject><subject>Androgens - pharmacology</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Castration</subject><subject>Cell Line, Tumor</subject><subject>COAGULATION</subject><subject>Dihydrotestosterone - pharmacology</subject><subject>Down-Regulation</subject><subject>early growth response protein 1</subject><subject>Early Growth Response Protein 1 - metabolism</subject><subject>EGR-1 protein</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - metabolism</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Myc protein</subject><subject>NF-kappa B - metabolism</subject><subject>NF‐κB</subject><subject>Orchiectomy</subject><subject>Original</subject><subject>Promoter Regions, Genetic</subject><subject>Prostate - metabolism</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - drug therapy</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Receptors, Androgen - drug effects</subject><subject>Receptors, Androgen - metabolism</subject><subject>Signal Transduction</subject><subject>Testosterone</subject><subject>Thromboembolism</subject><subject>Thromboplastin - genetics</subject><subject>Thromboplastin - metabolism</subject><subject>Tissue factor</subject><subject>Tumor cell lines</subject><subject>venous thromboembolism</subject><subject>Venous Thromboembolism - chemically induced</subject><subject>Venous Thromboembolism - genetics</subject><subject>Venous Thromboembolism - metabolism</subject><issn>1538-7933</issn><issn>1538-7836</issn><issn>1538-7836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kUtOwzAURS0EouUzYAPIEiMGpbGdJvEECSq-qsQExpbrPLepUjvYSUtnLIH1sAgWwUow9CMY4Imt946Or3QROiLRGQmnO6nHZ4TxlGyhNumxrJNmLNlevzljLbTn_SSKCO_RaBe1KI9pyihrI3thcmdHYLADBVVtHc7ltALjcV143wDWUn1P4aVy4H1hDZ4VEptGlSDdavv5-vbxfomlyXEYlgs8cnZej4PTV9Z4wJWzNRQGkwO0o2Xp4XB176On66vH_m1n8HBz178YdFQcM9LhmugkTdJhTzKihgloAM21zEiITiQnUQ6cSSoZkzqhuR5ylmtFIsh4kinO9tH50ls1wynkCkztZCkqV0ylWwgrC_F3Y4qxGNmZSOIs5XEWBCcrgbPPDfhaTGzjTMgsaERZTHqUJ4E6XVLKWe8d6M0PJBLf3YjQjfjpJrDHvyNtyHUZAegugXlRwuJ_k7h_vF0qvwDK-J3m</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Hoesel, B.</creator><creator>Mussbacher, M.</creator><creator>Dikorman, B.</creator><creator>Salzmann, M.</creator><creator>Assinger, A.</creator><creator>Hell, L.</creator><creator>Thaler, J.</creator><creator>Basílio, J.</creator><creator>Moser, B.</creator><creator>Resch, U.</creator><creator>Paar, H.</creator><creator>Mackman, N.</creator><creator>Schmid, J. A.</creator><general>Elsevier Limited</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7025-081X</orcidid></search><sort><creationdate>201804</creationdate><title>Androgen receptor dampens tissue factor expression via nuclear factor‐κB and early growth response protein 1</title><author>Hoesel, B. ; Mussbacher, M. ; Dikorman, B. ; Salzmann, M. ; Assinger, A. ; Hell, L. ; Thaler, J. ; Basílio, J. ; Moser, B. ; Resch, U. ; Paar, H. ; Mackman, N. ; Schmid, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4431-9f1f6767b5a31cb6efeef9fa812941a910de93a2a33af62dfb93dfc10e8968c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Androgen Antagonists - adverse effects</topic><topic>androgen receptor</topic><topic>Androgen receptors</topic><topic>Androgens</topic><topic>Androgens - pharmacology</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Castration</topic><topic>Cell Line, Tumor</topic><topic>COAGULATION</topic><topic>Dihydrotestosterone - pharmacology</topic><topic>Down-Regulation</topic><topic>early growth response protein 1</topic><topic>Early Growth Response Protein 1 - metabolism</topic><topic>EGR-1 protein</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - metabolism</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Myc protein</topic><topic>NF-kappa B - metabolism</topic><topic>NF‐κB</topic><topic>Orchiectomy</topic><topic>Original</topic><topic>Promoter Regions, Genetic</topic><topic>Prostate - metabolism</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - drug therapy</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Receptors, Androgen - drug effects</topic><topic>Receptors, Androgen - metabolism</topic><topic>Signal Transduction</topic><topic>Testosterone</topic><topic>Thromboembolism</topic><topic>Thromboplastin - genetics</topic><topic>Thromboplastin - metabolism</topic><topic>Tissue factor</topic><topic>Tumor cell lines</topic><topic>venous thromboembolism</topic><topic>Venous Thromboembolism - chemically induced</topic><topic>Venous Thromboembolism - genetics</topic><topic>Venous Thromboembolism - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoesel, B.</creatorcontrib><creatorcontrib>Mussbacher, M.</creatorcontrib><creatorcontrib>Dikorman, B.</creatorcontrib><creatorcontrib>Salzmann, M.</creatorcontrib><creatorcontrib>Assinger, A.</creatorcontrib><creatorcontrib>Hell, L.</creatorcontrib><creatorcontrib>Thaler, J.</creatorcontrib><creatorcontrib>Basílio, J.</creatorcontrib><creatorcontrib>Moser, B.</creatorcontrib><creatorcontrib>Resch, U.</creatorcontrib><creatorcontrib>Paar, H.</creatorcontrib><creatorcontrib>Mackman, N.</creatorcontrib><creatorcontrib>Schmid, J. A.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of thrombosis and haemostasis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoesel, B.</au><au>Mussbacher, M.</au><au>Dikorman, B.</au><au>Salzmann, M.</au><au>Assinger, A.</au><au>Hell, L.</au><au>Thaler, J.</au><au>Basílio, J.</au><au>Moser, B.</au><au>Resch, U.</au><au>Paar, H.</au><au>Mackman, N.</au><au>Schmid, J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Androgen receptor dampens tissue factor expression via nuclear factor‐κB and early growth response protein 1</atitle><jtitle>Journal of thrombosis and haemostasis</jtitle><addtitle>J Thromb Haemost</addtitle><date>2018-04</date><risdate>2018</risdate><volume>16</volume><issue>4</issue><spage>749</spage><epage>758</epage><pages>749-758</pages><issn>1538-7933</issn><issn>1538-7836</issn><eissn>1538-7836</eissn><abstract>Essentials Androgen deprivation increases the rate of venous thromboembolism in prostate cancer patients. We characterized androgen receptor‐mediated tissue factor regulation in prostate epithelial cells. Androgen receptor is dampening tissue factor expression in prostate epithelial cells. Androgen deprivation could enhance tissue factor expression and raise venous thromboembolism rates. Summary Background Prostate cancer is one of the leading causes of cancer death in men. Advanced prostate cancer is usually treated by androgen deprivation therapy (ADT), which is aimed at reducing circulating testosterone levels to reduce cancer growth. There is growing evidence that ADT can increase the rate of venous thromboembolism (VTE) in prostate cancer patients. The tissue factor (TF) gene is one of the most important mediators of coagulation and VTE, but, so far, there are limited data on androgen receptor (AR)‐mediated TF gene expression. Objectives To characterize AR‐mediated TF regulation in vitro and in vivo. Methods We used the androgen‐dependent prostate cancer cell lines LNCaP and MyC‐CaP to test whether TF expression is regulated by AR. Furthermore, we cloned the TF gene promoter into a luciferase reporter vector to identify the transcription factor‐binding sites that mediate TF regulation downstream of AR. Finally, we used castration experiments in mice to characterize AR‐mediated TF regulation in vivo. Results TF is directly regulated by AR. In LNCaP cells, nuclear factor‐κB signaling and EGR1 mediate TF expression. By using castration experiments in mice, we could detect upregulation of TF and early growth response protein 1 mRNA and protein expression in prostate epithelial cells. Conclusion AR is crucial for dampening TF expression, which could be important for increased TF expression and TF‐positive microvesicle release in androgen‐deprived prostate cancer patients.</abstract><cop>England</cop><pub>Elsevier Limited</pub><pmid>29427323</pmid><doi>10.1111/jth.13971</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7025-081X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1538-7933
ispartof Journal of thrombosis and haemostasis, 2018-04, Vol.16 (4), p.749-758
issn 1538-7933
1538-7836
1538-7836
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487948
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Androgen Antagonists - adverse effects
androgen receptor
Androgen receptors
Androgens
Androgens - pharmacology
Animals
Binding Sites
Castration
Cell Line, Tumor
COAGULATION
Dihydrotestosterone - pharmacology
Down-Regulation
early growth response protein 1
Early Growth Response Protein 1 - metabolism
EGR-1 protein
Epithelial cells
Epithelial Cells - metabolism
Gene expression
Humans
Male
Mice, Inbred C57BL
Myc protein
NF-kappa B - metabolism
NF‐κB
Orchiectomy
Original
Promoter Regions, Genetic
Prostate - metabolism
Prostate cancer
Prostatic Neoplasms - drug therapy
Prostatic Neoplasms - genetics
Prostatic Neoplasms - metabolism
Protein Binding
Proteins
Receptors, Androgen - drug effects
Receptors, Androgen - metabolism
Signal Transduction
Testosterone
Thromboembolism
Thromboplastin - genetics
Thromboplastin - metabolism
Tissue factor
Tumor cell lines
venous thromboembolism
Venous Thromboembolism - chemically induced
Venous Thromboembolism - genetics
Venous Thromboembolism - metabolism
title Androgen receptor dampens tissue factor expression via nuclear factor‐κB and early growth response protein 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Androgen%20receptor%20dampens%20tissue%20factor%20expression%20via%20nuclear%20factor%E2%80%90%CE%BAB%20and%20early%20growth%20response%20protein%201&rft.jtitle=Journal%20of%20thrombosis%20and%20haemostasis&rft.au=Hoesel,%20B.&rft.date=2018-04&rft.volume=16&rft.issue=4&rft.spage=749&rft.epage=758&rft.pages=749-758&rft.issn=1538-7933&rft.eissn=1538-7836&rft_id=info:doi/10.1111/jth.13971&rft_dat=%3Cproquest_pubme%3E2023415296%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023415296&rft_id=info:pmid/29427323&rfr_iscdi=true