Androgen receptor dampens tissue factor expression via nuclear factor‐κB and early growth response protein 1
Essentials Androgen deprivation increases the rate of venous thromboembolism in prostate cancer patients. We characterized androgen receptor‐mediated tissue factor regulation in prostate epithelial cells. Androgen receptor is dampening tissue factor expression in prostate epithelial cells. Androgen...
Gespeichert in:
Veröffentlicht in: | Journal of thrombosis and haemostasis 2018-04, Vol.16 (4), p.749-758 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 758 |
---|---|
container_issue | 4 |
container_start_page | 749 |
container_title | Journal of thrombosis and haemostasis |
container_volume | 16 |
creator | Hoesel, B. Mussbacher, M. Dikorman, B. Salzmann, M. Assinger, A. Hell, L. Thaler, J. Basílio, J. Moser, B. Resch, U. Paar, H. Mackman, N. Schmid, J. A. |
description | Essentials
Androgen deprivation increases the rate of venous thromboembolism in prostate cancer patients.
We characterized androgen receptor‐mediated tissue factor regulation in prostate epithelial cells.
Androgen receptor is dampening tissue factor expression in prostate epithelial cells.
Androgen deprivation could enhance tissue factor expression and raise venous thromboembolism rates.
Summary
Background
Prostate cancer is one of the leading causes of cancer death in men. Advanced prostate cancer is usually treated by androgen deprivation therapy (ADT), which is aimed at reducing circulating testosterone levels to reduce cancer growth. There is growing evidence that ADT can increase the rate of venous thromboembolism (VTE) in prostate cancer patients. The tissue factor (TF) gene is one of the most important mediators of coagulation and VTE, but, so far, there are limited data on androgen receptor (AR)‐mediated TF gene expression.
Objectives
To characterize AR‐mediated TF regulation in vitro and in vivo.
Methods
We used the androgen‐dependent prostate cancer cell lines LNCaP and MyC‐CaP to test whether TF expression is regulated by AR. Furthermore, we cloned the TF gene promoter into a luciferase reporter vector to identify the transcription factor‐binding sites that mediate TF regulation downstream of AR. Finally, we used castration experiments in mice to characterize AR‐mediated TF regulation in vivo.
Results
TF is directly regulated by AR. In LNCaP cells, nuclear factor‐κB signaling and EGR1 mediate TF expression. By using castration experiments in mice, we could detect upregulation of TF and early growth response protein 1 mRNA and protein expression in prostate epithelial cells.
Conclusion
AR is crucial for dampening TF expression, which could be important for increased TF expression and TF‐positive microvesicle release in androgen‐deprived prostate cancer patients. |
doi_str_mv | 10.1111/jth.13971 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2023415296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4431-9f1f6767b5a31cb6efeef9fa812941a910de93a2a33af62dfb93dfc10e8968c93</originalsourceid><addsrcrecordid>eNp1kUtOwzAURS0EouUzYAPIEiMGpbGdJvEECSq-qsQExpbrPLepUjvYSUtnLIH1sAgWwUow9CMY4Imt946Or3QROiLRGQmnO6nHZ4TxlGyhNumxrJNmLNlevzljLbTn_SSKCO_RaBe1KI9pyihrI3thcmdHYLADBVVtHc7ltALjcV143wDWUn1P4aVy4H1hDZ4VEptGlSDdavv5-vbxfomlyXEYlgs8cnZej4PTV9Z4wJWzNRQGkwO0o2Xp4XB176On66vH_m1n8HBz178YdFQcM9LhmugkTdJhTzKihgloAM21zEiITiQnUQ6cSSoZkzqhuR5ylmtFIsh4kinO9tH50ls1wynkCkztZCkqV0ylWwgrC_F3Y4qxGNmZSOIs5XEWBCcrgbPPDfhaTGzjTMgsaERZTHqUJ4E6XVLKWe8d6M0PJBLf3YjQjfjpJrDHvyNtyHUZAegugXlRwuJ_k7h_vF0qvwDK-J3m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023415296</pqid></control><display><type>article</type><title>Androgen receptor dampens tissue factor expression via nuclear factor‐κB and early growth response protein 1</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Hoesel, B. ; Mussbacher, M. ; Dikorman, B. ; Salzmann, M. ; Assinger, A. ; Hell, L. ; Thaler, J. ; Basílio, J. ; Moser, B. ; Resch, U. ; Paar, H. ; Mackman, N. ; Schmid, J. A.</creator><creatorcontrib>Hoesel, B. ; Mussbacher, M. ; Dikorman, B. ; Salzmann, M. ; Assinger, A. ; Hell, L. ; Thaler, J. ; Basílio, J. ; Moser, B. ; Resch, U. ; Paar, H. ; Mackman, N. ; Schmid, J. A.</creatorcontrib><description>Essentials
Androgen deprivation increases the rate of venous thromboembolism in prostate cancer patients.
We characterized androgen receptor‐mediated tissue factor regulation in prostate epithelial cells.
Androgen receptor is dampening tissue factor expression in prostate epithelial cells.
Androgen deprivation could enhance tissue factor expression and raise venous thromboembolism rates.
Summary
Background
Prostate cancer is one of the leading causes of cancer death in men. Advanced prostate cancer is usually treated by androgen deprivation therapy (ADT), which is aimed at reducing circulating testosterone levels to reduce cancer growth. There is growing evidence that ADT can increase the rate of venous thromboembolism (VTE) in prostate cancer patients. The tissue factor (TF) gene is one of the most important mediators of coagulation and VTE, but, so far, there are limited data on androgen receptor (AR)‐mediated TF gene expression.
Objectives
To characterize AR‐mediated TF regulation in vitro and in vivo.
Methods
We used the androgen‐dependent prostate cancer cell lines LNCaP and MyC‐CaP to test whether TF expression is regulated by AR. Furthermore, we cloned the TF gene promoter into a luciferase reporter vector to identify the transcription factor‐binding sites that mediate TF regulation downstream of AR. Finally, we used castration experiments in mice to characterize AR‐mediated TF regulation in vivo.
Results
TF is directly regulated by AR. In LNCaP cells, nuclear factor‐κB signaling and EGR1 mediate TF expression. By using castration experiments in mice, we could detect upregulation of TF and early growth response protein 1 mRNA and protein expression in prostate epithelial cells.
Conclusion
AR is crucial for dampening TF expression, which could be important for increased TF expression and TF‐positive microvesicle release in androgen‐deprived prostate cancer patients.</description><identifier>ISSN: 1538-7933</identifier><identifier>ISSN: 1538-7836</identifier><identifier>EISSN: 1538-7836</identifier><identifier>DOI: 10.1111/jth.13971</identifier><identifier>PMID: 29427323</identifier><language>eng</language><publisher>England: Elsevier Limited</publisher><subject>Androgen Antagonists - adverse effects ; androgen receptor ; Androgen receptors ; Androgens ; Androgens - pharmacology ; Animals ; Binding Sites ; Castration ; Cell Line, Tumor ; COAGULATION ; Dihydrotestosterone - pharmacology ; Down-Regulation ; early growth response protein 1 ; Early Growth Response Protein 1 - metabolism ; EGR-1 protein ; Epithelial cells ; Epithelial Cells - metabolism ; Gene expression ; Humans ; Male ; Mice, Inbred C57BL ; Myc protein ; NF-kappa B - metabolism ; NF‐κB ; Orchiectomy ; Original ; Promoter Regions, Genetic ; Prostate - metabolism ; Prostate cancer ; Prostatic Neoplasms - drug therapy ; Prostatic Neoplasms - genetics ; Prostatic Neoplasms - metabolism ; Protein Binding ; Proteins ; Receptors, Androgen - drug effects ; Receptors, Androgen - metabolism ; Signal Transduction ; Testosterone ; Thromboembolism ; Thromboplastin - genetics ; Thromboplastin - metabolism ; Tissue factor ; Tumor cell lines ; venous thromboembolism ; Venous Thromboembolism - chemically induced ; Venous Thromboembolism - genetics ; Venous Thromboembolism - metabolism</subject><ispartof>Journal of thrombosis and haemostasis, 2018-04, Vol.16 (4), p.749-758</ispartof><rights>2018 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.</rights><rights>2018 International Society on Thrombosis and Haemostasis.</rights><rights>Copyright © 2018 International Society on Thrombosis and Haemostasis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4431-9f1f6767b5a31cb6efeef9fa812941a910de93a2a33af62dfb93dfc10e8968c93</citedby><cites>FETCH-LOGICAL-c4431-9f1f6767b5a31cb6efeef9fa812941a910de93a2a33af62dfb93dfc10e8968c93</cites><orcidid>0000-0002-7025-081X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29427323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoesel, B.</creatorcontrib><creatorcontrib>Mussbacher, M.</creatorcontrib><creatorcontrib>Dikorman, B.</creatorcontrib><creatorcontrib>Salzmann, M.</creatorcontrib><creatorcontrib>Assinger, A.</creatorcontrib><creatorcontrib>Hell, L.</creatorcontrib><creatorcontrib>Thaler, J.</creatorcontrib><creatorcontrib>Basílio, J.</creatorcontrib><creatorcontrib>Moser, B.</creatorcontrib><creatorcontrib>Resch, U.</creatorcontrib><creatorcontrib>Paar, H.</creatorcontrib><creatorcontrib>Mackman, N.</creatorcontrib><creatorcontrib>Schmid, J. A.</creatorcontrib><title>Androgen receptor dampens tissue factor expression via nuclear factor‐κB and early growth response protein 1</title><title>Journal of thrombosis and haemostasis</title><addtitle>J Thromb Haemost</addtitle><description>Essentials
Androgen deprivation increases the rate of venous thromboembolism in prostate cancer patients.
We characterized androgen receptor‐mediated tissue factor regulation in prostate epithelial cells.
Androgen receptor is dampening tissue factor expression in prostate epithelial cells.
Androgen deprivation could enhance tissue factor expression and raise venous thromboembolism rates.
Summary
Background
Prostate cancer is one of the leading causes of cancer death in men. Advanced prostate cancer is usually treated by androgen deprivation therapy (ADT), which is aimed at reducing circulating testosterone levels to reduce cancer growth. There is growing evidence that ADT can increase the rate of venous thromboembolism (VTE) in prostate cancer patients. The tissue factor (TF) gene is one of the most important mediators of coagulation and VTE, but, so far, there are limited data on androgen receptor (AR)‐mediated TF gene expression.
Objectives
To characterize AR‐mediated TF regulation in vitro and in vivo.
Methods
We used the androgen‐dependent prostate cancer cell lines LNCaP and MyC‐CaP to test whether TF expression is regulated by AR. Furthermore, we cloned the TF gene promoter into a luciferase reporter vector to identify the transcription factor‐binding sites that mediate TF regulation downstream of AR. Finally, we used castration experiments in mice to characterize AR‐mediated TF regulation in vivo.
Results
TF is directly regulated by AR. In LNCaP cells, nuclear factor‐κB signaling and EGR1 mediate TF expression. By using castration experiments in mice, we could detect upregulation of TF and early growth response protein 1 mRNA and protein expression in prostate epithelial cells.
Conclusion
AR is crucial for dampening TF expression, which could be important for increased TF expression and TF‐positive microvesicle release in androgen‐deprived prostate cancer patients.</description><subject>Androgen Antagonists - adverse effects</subject><subject>androgen receptor</subject><subject>Androgen receptors</subject><subject>Androgens</subject><subject>Androgens - pharmacology</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Castration</subject><subject>Cell Line, Tumor</subject><subject>COAGULATION</subject><subject>Dihydrotestosterone - pharmacology</subject><subject>Down-Regulation</subject><subject>early growth response protein 1</subject><subject>Early Growth Response Protein 1 - metabolism</subject><subject>EGR-1 protein</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - metabolism</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Myc protein</subject><subject>NF-kappa B - metabolism</subject><subject>NF‐κB</subject><subject>Orchiectomy</subject><subject>Original</subject><subject>Promoter Regions, Genetic</subject><subject>Prostate - metabolism</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - drug therapy</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Receptors, Androgen - drug effects</subject><subject>Receptors, Androgen - metabolism</subject><subject>Signal Transduction</subject><subject>Testosterone</subject><subject>Thromboembolism</subject><subject>Thromboplastin - genetics</subject><subject>Thromboplastin - metabolism</subject><subject>Tissue factor</subject><subject>Tumor cell lines</subject><subject>venous thromboembolism</subject><subject>Venous Thromboembolism - chemically induced</subject><subject>Venous Thromboembolism - genetics</subject><subject>Venous Thromboembolism - metabolism</subject><issn>1538-7933</issn><issn>1538-7836</issn><issn>1538-7836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kUtOwzAURS0EouUzYAPIEiMGpbGdJvEECSq-qsQExpbrPLepUjvYSUtnLIH1sAgWwUow9CMY4Imt946Or3QROiLRGQmnO6nHZ4TxlGyhNumxrJNmLNlevzljLbTn_SSKCO_RaBe1KI9pyihrI3thcmdHYLADBVVtHc7ltALjcV143wDWUn1P4aVy4H1hDZ4VEptGlSDdavv5-vbxfomlyXEYlgs8cnZej4PTV9Z4wJWzNRQGkwO0o2Xp4XB176On66vH_m1n8HBz178YdFQcM9LhmugkTdJhTzKihgloAM21zEiITiQnUQ6cSSoZkzqhuR5ylmtFIsh4kinO9tH50ls1wynkCkztZCkqV0ylWwgrC_F3Y4qxGNmZSOIs5XEWBCcrgbPPDfhaTGzjTMgsaERZTHqUJ4E6XVLKWe8d6M0PJBLf3YjQjfjpJrDHvyNtyHUZAegugXlRwuJ_k7h_vF0qvwDK-J3m</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Hoesel, B.</creator><creator>Mussbacher, M.</creator><creator>Dikorman, B.</creator><creator>Salzmann, M.</creator><creator>Assinger, A.</creator><creator>Hell, L.</creator><creator>Thaler, J.</creator><creator>Basílio, J.</creator><creator>Moser, B.</creator><creator>Resch, U.</creator><creator>Paar, H.</creator><creator>Mackman, N.</creator><creator>Schmid, J. A.</creator><general>Elsevier Limited</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7025-081X</orcidid></search><sort><creationdate>201804</creationdate><title>Androgen receptor dampens tissue factor expression via nuclear factor‐κB and early growth response protein 1</title><author>Hoesel, B. ; Mussbacher, M. ; Dikorman, B. ; Salzmann, M. ; Assinger, A. ; Hell, L. ; Thaler, J. ; Basílio, J. ; Moser, B. ; Resch, U. ; Paar, H. ; Mackman, N. ; Schmid, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4431-9f1f6767b5a31cb6efeef9fa812941a910de93a2a33af62dfb93dfc10e8968c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Androgen Antagonists - adverse effects</topic><topic>androgen receptor</topic><topic>Androgen receptors</topic><topic>Androgens</topic><topic>Androgens - pharmacology</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Castration</topic><topic>Cell Line, Tumor</topic><topic>COAGULATION</topic><topic>Dihydrotestosterone - pharmacology</topic><topic>Down-Regulation</topic><topic>early growth response protein 1</topic><topic>Early Growth Response Protein 1 - metabolism</topic><topic>EGR-1 protein</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - metabolism</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Myc protein</topic><topic>NF-kappa B - metabolism</topic><topic>NF‐κB</topic><topic>Orchiectomy</topic><topic>Original</topic><topic>Promoter Regions, Genetic</topic><topic>Prostate - metabolism</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - drug therapy</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Receptors, Androgen - drug effects</topic><topic>Receptors, Androgen - metabolism</topic><topic>Signal Transduction</topic><topic>Testosterone</topic><topic>Thromboembolism</topic><topic>Thromboplastin - genetics</topic><topic>Thromboplastin - metabolism</topic><topic>Tissue factor</topic><topic>Tumor cell lines</topic><topic>venous thromboembolism</topic><topic>Venous Thromboembolism - chemically induced</topic><topic>Venous Thromboembolism - genetics</topic><topic>Venous Thromboembolism - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoesel, B.</creatorcontrib><creatorcontrib>Mussbacher, M.</creatorcontrib><creatorcontrib>Dikorman, B.</creatorcontrib><creatorcontrib>Salzmann, M.</creatorcontrib><creatorcontrib>Assinger, A.</creatorcontrib><creatorcontrib>Hell, L.</creatorcontrib><creatorcontrib>Thaler, J.</creatorcontrib><creatorcontrib>Basílio, J.</creatorcontrib><creatorcontrib>Moser, B.</creatorcontrib><creatorcontrib>Resch, U.</creatorcontrib><creatorcontrib>Paar, H.</creatorcontrib><creatorcontrib>Mackman, N.</creatorcontrib><creatorcontrib>Schmid, J. A.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of thrombosis and haemostasis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoesel, B.</au><au>Mussbacher, M.</au><au>Dikorman, B.</au><au>Salzmann, M.</au><au>Assinger, A.</au><au>Hell, L.</au><au>Thaler, J.</au><au>Basílio, J.</au><au>Moser, B.</au><au>Resch, U.</au><au>Paar, H.</au><au>Mackman, N.</au><au>Schmid, J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Androgen receptor dampens tissue factor expression via nuclear factor‐κB and early growth response protein 1</atitle><jtitle>Journal of thrombosis and haemostasis</jtitle><addtitle>J Thromb Haemost</addtitle><date>2018-04</date><risdate>2018</risdate><volume>16</volume><issue>4</issue><spage>749</spage><epage>758</epage><pages>749-758</pages><issn>1538-7933</issn><issn>1538-7836</issn><eissn>1538-7836</eissn><abstract>Essentials
Androgen deprivation increases the rate of venous thromboembolism in prostate cancer patients.
We characterized androgen receptor‐mediated tissue factor regulation in prostate epithelial cells.
Androgen receptor is dampening tissue factor expression in prostate epithelial cells.
Androgen deprivation could enhance tissue factor expression and raise venous thromboembolism rates.
Summary
Background
Prostate cancer is one of the leading causes of cancer death in men. Advanced prostate cancer is usually treated by androgen deprivation therapy (ADT), which is aimed at reducing circulating testosterone levels to reduce cancer growth. There is growing evidence that ADT can increase the rate of venous thromboembolism (VTE) in prostate cancer patients. The tissue factor (TF) gene is one of the most important mediators of coagulation and VTE, but, so far, there are limited data on androgen receptor (AR)‐mediated TF gene expression.
Objectives
To characterize AR‐mediated TF regulation in vitro and in vivo.
Methods
We used the androgen‐dependent prostate cancer cell lines LNCaP and MyC‐CaP to test whether TF expression is regulated by AR. Furthermore, we cloned the TF gene promoter into a luciferase reporter vector to identify the transcription factor‐binding sites that mediate TF regulation downstream of AR. Finally, we used castration experiments in mice to characterize AR‐mediated TF regulation in vivo.
Results
TF is directly regulated by AR. In LNCaP cells, nuclear factor‐κB signaling and EGR1 mediate TF expression. By using castration experiments in mice, we could detect upregulation of TF and early growth response protein 1 mRNA and protein expression in prostate epithelial cells.
Conclusion
AR is crucial for dampening TF expression, which could be important for increased TF expression and TF‐positive microvesicle release in androgen‐deprived prostate cancer patients.</abstract><cop>England</cop><pub>Elsevier Limited</pub><pmid>29427323</pmid><doi>10.1111/jth.13971</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7025-081X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1538-7933 |
ispartof | Journal of thrombosis and haemostasis, 2018-04, Vol.16 (4), p.749-758 |
issn | 1538-7933 1538-7836 1538-7836 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487948 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Androgen Antagonists - adverse effects androgen receptor Androgen receptors Androgens Androgens - pharmacology Animals Binding Sites Castration Cell Line, Tumor COAGULATION Dihydrotestosterone - pharmacology Down-Regulation early growth response protein 1 Early Growth Response Protein 1 - metabolism EGR-1 protein Epithelial cells Epithelial Cells - metabolism Gene expression Humans Male Mice, Inbred C57BL Myc protein NF-kappa B - metabolism NF‐κB Orchiectomy Original Promoter Regions, Genetic Prostate - metabolism Prostate cancer Prostatic Neoplasms - drug therapy Prostatic Neoplasms - genetics Prostatic Neoplasms - metabolism Protein Binding Proteins Receptors, Androgen - drug effects Receptors, Androgen - metabolism Signal Transduction Testosterone Thromboembolism Thromboplastin - genetics Thromboplastin - metabolism Tissue factor Tumor cell lines venous thromboembolism Venous Thromboembolism - chemically induced Venous Thromboembolism - genetics Venous Thromboembolism - metabolism |
title | Androgen receptor dampens tissue factor expression via nuclear factor‐κB and early growth response protein 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Androgen%20receptor%20dampens%20tissue%20factor%20expression%20via%20nuclear%20factor%E2%80%90%CE%BAB%20and%20early%20growth%20response%20protein%201&rft.jtitle=Journal%20of%20thrombosis%20and%20haemostasis&rft.au=Hoesel,%20B.&rft.date=2018-04&rft.volume=16&rft.issue=4&rft.spage=749&rft.epage=758&rft.pages=749-758&rft.issn=1538-7933&rft.eissn=1538-7836&rft_id=info:doi/10.1111/jth.13971&rft_dat=%3Cproquest_pubme%3E2023415296%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023415296&rft_id=info:pmid/29427323&rfr_iscdi=true |