Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut
Probiotics are living microorganisms that are increasingly used as gastrointestinal therapeutics by virtue of their innate or engineered genetic function. Unlike abiotic therapeutics, probiotics can replicate in their intended site, subjecting their genomes and therapeutic properties to natural sele...
Gespeichert in:
Veröffentlicht in: | Cell host & microbe 2019-04, Vol.25 (4), p.499-512.e8 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 512.e8 |
---|---|
container_issue | 4 |
container_start_page | 499 |
container_title | Cell host & microbe |
container_volume | 25 |
creator | Crook, Nathan Ferreiro, Aura Gasparrini, Andrew J. Pesesky, Mitchell W. Gibson, Molly K. Wang, Bin Sun, Xiaoqing Condiotte, Zevin Dobrowolski, Stephen Peterson, Daniel Dantas, Gautam |
description | Probiotics are living microorganisms that are increasingly used as gastrointestinal therapeutics by virtue of their innate or engineered genetic function. Unlike abiotic therapeutics, probiotics can replicate in their intended site, subjecting their genomes and therapeutic properties to natural selection. We exposed the candidate probiotic E. coli Nissle (EcN) to the mouse gastrointestinal tract over several weeks, systematically altering the diet and background microbiota complexity. In-transit EcN accumulates genetic mutations that modulate carbohydrate utilization, stress response, and adhesion to gain competitive fitness, while previous exposure to antibiotics reveals an acquisition of resistance. We then leveraged these insights to generate an EcN strain that shows therapeutic efficacy in a mouse model of phenylketonuria and found that it was genetically stable over 1 week, thereby validating EcN’s utility as a chassis for engineering. Collectively, we demonstrate a generalizable pipeline that can be applied to other probiotics to better understand their safety and engineering potential.
[Display omitted]
•Carbohydrate availability in the gut drives E. coli Nissle adaptation in vivo•Gut monocolonization selects for glycosyl hydrolases enabling population cross-feeding•Mutations that enhance mucin utilization are enriched in low-diversity guts•Prior antibiotic exposure in conventional guts can lead to evolved probiotic resistance
E. coli Nissle is a probiotic and chassis for engineered biotherapies, but its adaptive behavior in the gut is unclear. Crook et al. report host-mediated selective pressures modulating carbohydrate utilization and metabolism of E. coli Nissle. This in-host evolution also promotes probiotic survival by enabling effective stress responses during colonization. |
doi_str_mv | 10.1016/j.chom.2019.02.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1931312819301015</els_id><sourcerecordid>2200795451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-79edf9aea0a5063e7c9058e9c58880770647311aa78c2f87fbd0fa01d2e9f7c73</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EoqXwAhyQj1wSxk4cxxJCqlalIJUWqXC2vPak61USL7Z3pb4Nz8KT4e22Vblw8sj-5h_P_xPylkHNgHUf1rVdhanmwFQNvAYQz8gxU01bddCp53c1qxrG-yPyKqV1AQRI9pIcNaB4x1s4Jtenzmyy3yG9ztFkvPGYaBhoXiFdmNl5Vy7p9xiWPmRv6Vn957cNo6eXPqURqZ_v0G9mmszozUzPt_k1eTGYMeGb-_OE_Px89mPxpbq4Ov-6OL2obCtErqRCNyiDBoyArkFpFYgelRV934OU0LWyYcwY2Vs-9HJYOhgMMMdRDdLK5oR8OuhutssJncW5rDDqTfSTibc6GK__fZn9St-Ene7aXgpoi8D7e4EYfm0xZT35ZHEczYxhmzTnAFKJVrCC8gNqY0gp4vA4hoHep6HXep-G3qehgetidml69_SDjy0P9hfg4wHAYtPOY9TJepwtOh_RZu2C_5_-X91SnKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200795451</pqid></control><display><type>article</type><title>Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Crook, Nathan ; Ferreiro, Aura ; Gasparrini, Andrew J. ; Pesesky, Mitchell W. ; Gibson, Molly K. ; Wang, Bin ; Sun, Xiaoqing ; Condiotte, Zevin ; Dobrowolski, Stephen ; Peterson, Daniel ; Dantas, Gautam</creator><creatorcontrib>Crook, Nathan ; Ferreiro, Aura ; Gasparrini, Andrew J. ; Pesesky, Mitchell W. ; Gibson, Molly K. ; Wang, Bin ; Sun, Xiaoqing ; Condiotte, Zevin ; Dobrowolski, Stephen ; Peterson, Daniel ; Dantas, Gautam</creatorcontrib><description>Probiotics are living microorganisms that are increasingly used as gastrointestinal therapeutics by virtue of their innate or engineered genetic function. Unlike abiotic therapeutics, probiotics can replicate in their intended site, subjecting their genomes and therapeutic properties to natural selection. We exposed the candidate probiotic E. coli Nissle (EcN) to the mouse gastrointestinal tract over several weeks, systematically altering the diet and background microbiota complexity. In-transit EcN accumulates genetic mutations that modulate carbohydrate utilization, stress response, and adhesion to gain competitive fitness, while previous exposure to antibiotics reveals an acquisition of resistance. We then leveraged these insights to generate an EcN strain that shows therapeutic efficacy in a mouse model of phenylketonuria and found that it was genetically stable over 1 week, thereby validating EcN’s utility as a chassis for engineering. Collectively, we demonstrate a generalizable pipeline that can be applied to other probiotics to better understand their safety and engineering potential.
[Display omitted]
•Carbohydrate availability in the gut drives E. coli Nissle adaptation in vivo•Gut monocolonization selects for glycosyl hydrolases enabling population cross-feeding•Mutations that enhance mucin utilization are enriched in low-diversity guts•Prior antibiotic exposure in conventional guts can lead to evolved probiotic resistance
E. coli Nissle is a probiotic and chassis for engineered biotherapies, but its adaptive behavior in the gut is unclear. Crook et al. report host-mediated selective pressures modulating carbohydrate utilization and metabolism of E. coli Nissle. This in-host evolution also promotes probiotic survival by enabling effective stress responses during colonization.</description><identifier>ISSN: 1931-3128</identifier><identifier>ISSN: 1934-6069</identifier><identifier>EISSN: 1934-6069</identifier><identifier>DOI: 10.1016/j.chom.2019.02.005</identifier><identifier>PMID: 30926240</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptation, Biological ; Animals ; Disease Models, Animal ; E. coli ; engineering ; Escherichia coli - growth & development ; Escherichia coli - metabolism ; evolution ; Gastrointestinal Agents - administration & dosage ; Gastrointestinal Tract - microbiology ; Metabolism ; Mice ; microbiome ; Mutation ; phenylketonuria ; Phenylketonurias - therapy ; probiotic ; Probiotics - administration & dosage ; Selection, Genetic</subject><ispartof>Cell host & microbe, 2019-04, Vol.25 (4), p.499-512.e8</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-79edf9aea0a5063e7c9058e9c58880770647311aa78c2f87fbd0fa01d2e9f7c73</citedby><cites>FETCH-LOGICAL-c455t-79edf9aea0a5063e7c9058e9c58880770647311aa78c2f87fbd0fa01d2e9f7c73</cites><orcidid>0000-0001-6165-1972 ; 0000-0003-0455-8370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chom.2019.02.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30926240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crook, Nathan</creatorcontrib><creatorcontrib>Ferreiro, Aura</creatorcontrib><creatorcontrib>Gasparrini, Andrew J.</creatorcontrib><creatorcontrib>Pesesky, Mitchell W.</creatorcontrib><creatorcontrib>Gibson, Molly K.</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Sun, Xiaoqing</creatorcontrib><creatorcontrib>Condiotte, Zevin</creatorcontrib><creatorcontrib>Dobrowolski, Stephen</creatorcontrib><creatorcontrib>Peterson, Daniel</creatorcontrib><creatorcontrib>Dantas, Gautam</creatorcontrib><title>Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut</title><title>Cell host & microbe</title><addtitle>Cell Host Microbe</addtitle><description>Probiotics are living microorganisms that are increasingly used as gastrointestinal therapeutics by virtue of their innate or engineered genetic function. Unlike abiotic therapeutics, probiotics can replicate in their intended site, subjecting their genomes and therapeutic properties to natural selection. We exposed the candidate probiotic E. coli Nissle (EcN) to the mouse gastrointestinal tract over several weeks, systematically altering the diet and background microbiota complexity. In-transit EcN accumulates genetic mutations that modulate carbohydrate utilization, stress response, and adhesion to gain competitive fitness, while previous exposure to antibiotics reveals an acquisition of resistance. We then leveraged these insights to generate an EcN strain that shows therapeutic efficacy in a mouse model of phenylketonuria and found that it was genetically stable over 1 week, thereby validating EcN’s utility as a chassis for engineering. Collectively, we demonstrate a generalizable pipeline that can be applied to other probiotics to better understand their safety and engineering potential.
[Display omitted]
•Carbohydrate availability in the gut drives E. coli Nissle adaptation in vivo•Gut monocolonization selects for glycosyl hydrolases enabling population cross-feeding•Mutations that enhance mucin utilization are enriched in low-diversity guts•Prior antibiotic exposure in conventional guts can lead to evolved probiotic resistance
E. coli Nissle is a probiotic and chassis for engineered biotherapies, but its adaptive behavior in the gut is unclear. Crook et al. report host-mediated selective pressures modulating carbohydrate utilization and metabolism of E. coli Nissle. This in-host evolution also promotes probiotic survival by enabling effective stress responses during colonization.</description><subject>Adaptation, Biological</subject><subject>Animals</subject><subject>Disease Models, Animal</subject><subject>E. coli</subject><subject>engineering</subject><subject>Escherichia coli - growth & development</subject><subject>Escherichia coli - metabolism</subject><subject>evolution</subject><subject>Gastrointestinal Agents - administration & dosage</subject><subject>Gastrointestinal Tract - microbiology</subject><subject>Metabolism</subject><subject>Mice</subject><subject>microbiome</subject><subject>Mutation</subject><subject>phenylketonuria</subject><subject>Phenylketonurias - therapy</subject><subject>probiotic</subject><subject>Probiotics - administration & dosage</subject><subject>Selection, Genetic</subject><issn>1931-3128</issn><issn>1934-6069</issn><issn>1934-6069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EoqXwAhyQj1wSxk4cxxJCqlalIJUWqXC2vPak61USL7Z3pb4Nz8KT4e22Vblw8sj-5h_P_xPylkHNgHUf1rVdhanmwFQNvAYQz8gxU01bddCp53c1qxrG-yPyKqV1AQRI9pIcNaB4x1s4Jtenzmyy3yG9ztFkvPGYaBhoXiFdmNl5Vy7p9xiWPmRv6Vn957cNo6eXPqURqZ_v0G9mmszozUzPt_k1eTGYMeGb-_OE_Px89mPxpbq4Ov-6OL2obCtErqRCNyiDBoyArkFpFYgelRV934OU0LWyYcwY2Vs-9HJYOhgMMMdRDdLK5oR8OuhutssJncW5rDDqTfSTibc6GK__fZn9St-Ene7aXgpoi8D7e4EYfm0xZT35ZHEczYxhmzTnAFKJVrCC8gNqY0gp4vA4hoHep6HXep-G3qehgetidml69_SDjy0P9hfg4wHAYtPOY9TJepwtOh_RZu2C_5_-X91SnKw</recordid><startdate>20190410</startdate><enddate>20190410</enddate><creator>Crook, Nathan</creator><creator>Ferreiro, Aura</creator><creator>Gasparrini, Andrew J.</creator><creator>Pesesky, Mitchell W.</creator><creator>Gibson, Molly K.</creator><creator>Wang, Bin</creator><creator>Sun, Xiaoqing</creator><creator>Condiotte, Zevin</creator><creator>Dobrowolski, Stephen</creator><creator>Peterson, Daniel</creator><creator>Dantas, Gautam</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6165-1972</orcidid><orcidid>https://orcid.org/0000-0003-0455-8370</orcidid></search><sort><creationdate>20190410</creationdate><title>Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut</title><author>Crook, Nathan ; Ferreiro, Aura ; Gasparrini, Andrew J. ; Pesesky, Mitchell W. ; Gibson, Molly K. ; Wang, Bin ; Sun, Xiaoqing ; Condiotte, Zevin ; Dobrowolski, Stephen ; Peterson, Daniel ; Dantas, Gautam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-79edf9aea0a5063e7c9058e9c58880770647311aa78c2f87fbd0fa01d2e9f7c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation, Biological</topic><topic>Animals</topic><topic>Disease Models, Animal</topic><topic>E. coli</topic><topic>engineering</topic><topic>Escherichia coli - growth & development</topic><topic>Escherichia coli - metabolism</topic><topic>evolution</topic><topic>Gastrointestinal Agents - administration & dosage</topic><topic>Gastrointestinal Tract - microbiology</topic><topic>Metabolism</topic><topic>Mice</topic><topic>microbiome</topic><topic>Mutation</topic><topic>phenylketonuria</topic><topic>Phenylketonurias - therapy</topic><topic>probiotic</topic><topic>Probiotics - administration & dosage</topic><topic>Selection, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crook, Nathan</creatorcontrib><creatorcontrib>Ferreiro, Aura</creatorcontrib><creatorcontrib>Gasparrini, Andrew J.</creatorcontrib><creatorcontrib>Pesesky, Mitchell W.</creatorcontrib><creatorcontrib>Gibson, Molly K.</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Sun, Xiaoqing</creatorcontrib><creatorcontrib>Condiotte, Zevin</creatorcontrib><creatorcontrib>Dobrowolski, Stephen</creatorcontrib><creatorcontrib>Peterson, Daniel</creatorcontrib><creatorcontrib>Dantas, Gautam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell host & microbe</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crook, Nathan</au><au>Ferreiro, Aura</au><au>Gasparrini, Andrew J.</au><au>Pesesky, Mitchell W.</au><au>Gibson, Molly K.</au><au>Wang, Bin</au><au>Sun, Xiaoqing</au><au>Condiotte, Zevin</au><au>Dobrowolski, Stephen</au><au>Peterson, Daniel</au><au>Dantas, Gautam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut</atitle><jtitle>Cell host & microbe</jtitle><addtitle>Cell Host Microbe</addtitle><date>2019-04-10</date><risdate>2019</risdate><volume>25</volume><issue>4</issue><spage>499</spage><epage>512.e8</epage><pages>499-512.e8</pages><issn>1931-3128</issn><issn>1934-6069</issn><eissn>1934-6069</eissn><abstract>Probiotics are living microorganisms that are increasingly used as gastrointestinal therapeutics by virtue of their innate or engineered genetic function. Unlike abiotic therapeutics, probiotics can replicate in their intended site, subjecting their genomes and therapeutic properties to natural selection. We exposed the candidate probiotic E. coli Nissle (EcN) to the mouse gastrointestinal tract over several weeks, systematically altering the diet and background microbiota complexity. In-transit EcN accumulates genetic mutations that modulate carbohydrate utilization, stress response, and adhesion to gain competitive fitness, while previous exposure to antibiotics reveals an acquisition of resistance. We then leveraged these insights to generate an EcN strain that shows therapeutic efficacy in a mouse model of phenylketonuria and found that it was genetically stable over 1 week, thereby validating EcN’s utility as a chassis for engineering. Collectively, we demonstrate a generalizable pipeline that can be applied to other probiotics to better understand their safety and engineering potential.
[Display omitted]
•Carbohydrate availability in the gut drives E. coli Nissle adaptation in vivo•Gut monocolonization selects for glycosyl hydrolases enabling population cross-feeding•Mutations that enhance mucin utilization are enriched in low-diversity guts•Prior antibiotic exposure in conventional guts can lead to evolved probiotic resistance
E. coli Nissle is a probiotic and chassis for engineered biotherapies, but its adaptive behavior in the gut is unclear. Crook et al. report host-mediated selective pressures modulating carbohydrate utilization and metabolism of E. coli Nissle. This in-host evolution also promotes probiotic survival by enabling effective stress responses during colonization.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30926240</pmid><doi>10.1016/j.chom.2019.02.005</doi><orcidid>https://orcid.org/0000-0001-6165-1972</orcidid><orcidid>https://orcid.org/0000-0003-0455-8370</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-3128 |
ispartof | Cell host & microbe, 2019-04, Vol.25 (4), p.499-512.e8 |
issn | 1931-3128 1934-6069 1934-6069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487504 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Adaptation, Biological Animals Disease Models, Animal E. coli engineering Escherichia coli - growth & development Escherichia coli - metabolism evolution Gastrointestinal Agents - administration & dosage Gastrointestinal Tract - microbiology Metabolism Mice microbiome Mutation phenylketonuria Phenylketonurias - therapy probiotic Probiotics - administration & dosage Selection, Genetic |
title | Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Strategies%20of%20the%20Candidate%20Probiotic%20E.%C2%A0coli%20Nissle%20in%20the%20Mammalian%20Gut&rft.jtitle=Cell%20host%20&%20microbe&rft.au=Crook,%20Nathan&rft.date=2019-04-10&rft.volume=25&rft.issue=4&rft.spage=499&rft.epage=512.e8&rft.pages=499-512.e8&rft.issn=1931-3128&rft.eissn=1934-6069&rft_id=info:doi/10.1016/j.chom.2019.02.005&rft_dat=%3Cproquest_pubme%3E2200795451%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200795451&rft_id=info:pmid/30926240&rft_els_id=S1931312819301015&rfr_iscdi=true |