Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut

Probiotics are living microorganisms that are increasingly used as gastrointestinal therapeutics by virtue of their innate or engineered genetic function. Unlike abiotic therapeutics, probiotics can replicate in their intended site, subjecting their genomes and therapeutic properties to natural sele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell host & microbe 2019-04, Vol.25 (4), p.499-512.e8
Hauptverfasser: Crook, Nathan, Ferreiro, Aura, Gasparrini, Andrew J., Pesesky, Mitchell W., Gibson, Molly K., Wang, Bin, Sun, Xiaoqing, Condiotte, Zevin, Dobrowolski, Stephen, Peterson, Daniel, Dantas, Gautam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 512.e8
container_issue 4
container_start_page 499
container_title Cell host & microbe
container_volume 25
creator Crook, Nathan
Ferreiro, Aura
Gasparrini, Andrew J.
Pesesky, Mitchell W.
Gibson, Molly K.
Wang, Bin
Sun, Xiaoqing
Condiotte, Zevin
Dobrowolski, Stephen
Peterson, Daniel
Dantas, Gautam
description Probiotics are living microorganisms that are increasingly used as gastrointestinal therapeutics by virtue of their innate or engineered genetic function. Unlike abiotic therapeutics, probiotics can replicate in their intended site, subjecting their genomes and therapeutic properties to natural selection. We exposed the candidate probiotic E. coli Nissle (EcN) to the mouse gastrointestinal tract over several weeks, systematically altering the diet and background microbiota complexity. In-transit EcN accumulates genetic mutations that modulate carbohydrate utilization, stress response, and adhesion to gain competitive fitness, while previous exposure to antibiotics reveals an acquisition of resistance. We then leveraged these insights to generate an EcN strain that shows therapeutic efficacy in a mouse model of phenylketonuria and found that it was genetically stable over 1 week, thereby validating EcN’s utility as a chassis for engineering. Collectively, we demonstrate a generalizable pipeline that can be applied to other probiotics to better understand their safety and engineering potential. [Display omitted] •Carbohydrate availability in the gut drives E. coli Nissle adaptation in vivo•Gut monocolonization selects for glycosyl hydrolases enabling population cross-feeding•Mutations that enhance mucin utilization are enriched in low-diversity guts•Prior antibiotic exposure in conventional guts can lead to evolved probiotic resistance E. coli Nissle is a probiotic and chassis for engineered biotherapies, but its adaptive behavior in the gut is unclear. Crook et al. report host-mediated selective pressures modulating carbohydrate utilization and metabolism of E. coli Nissle. This in-host evolution also promotes probiotic survival by enabling effective stress responses during colonization.
doi_str_mv 10.1016/j.chom.2019.02.005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1931312819301015</els_id><sourcerecordid>2200795451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-79edf9aea0a5063e7c9058e9c58880770647311aa78c2f87fbd0fa01d2e9f7c73</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EoqXwAhyQj1wSxk4cxxJCqlalIJUWqXC2vPak61USL7Z3pb4Nz8KT4e22Vblw8sj-5h_P_xPylkHNgHUf1rVdhanmwFQNvAYQz8gxU01bddCp53c1qxrG-yPyKqV1AQRI9pIcNaB4x1s4Jtenzmyy3yG9ztFkvPGYaBhoXiFdmNl5Vy7p9xiWPmRv6Vn957cNo6eXPqURqZ_v0G9mmszozUzPt_k1eTGYMeGb-_OE_Px89mPxpbq4Ov-6OL2obCtErqRCNyiDBoyArkFpFYgelRV934OU0LWyYcwY2Vs-9HJYOhgMMMdRDdLK5oR8OuhutssJncW5rDDqTfSTibc6GK__fZn9St-Ene7aXgpoi8D7e4EYfm0xZT35ZHEczYxhmzTnAFKJVrCC8gNqY0gp4vA4hoHep6HXep-G3qehgetidml69_SDjy0P9hfg4wHAYtPOY9TJepwtOh_RZu2C_5_-X91SnKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200795451</pqid></control><display><type>article</type><title>Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Crook, Nathan ; Ferreiro, Aura ; Gasparrini, Andrew J. ; Pesesky, Mitchell W. ; Gibson, Molly K. ; Wang, Bin ; Sun, Xiaoqing ; Condiotte, Zevin ; Dobrowolski, Stephen ; Peterson, Daniel ; Dantas, Gautam</creator><creatorcontrib>Crook, Nathan ; Ferreiro, Aura ; Gasparrini, Andrew J. ; Pesesky, Mitchell W. ; Gibson, Molly K. ; Wang, Bin ; Sun, Xiaoqing ; Condiotte, Zevin ; Dobrowolski, Stephen ; Peterson, Daniel ; Dantas, Gautam</creatorcontrib><description>Probiotics are living microorganisms that are increasingly used as gastrointestinal therapeutics by virtue of their innate or engineered genetic function. Unlike abiotic therapeutics, probiotics can replicate in their intended site, subjecting their genomes and therapeutic properties to natural selection. We exposed the candidate probiotic E. coli Nissle (EcN) to the mouse gastrointestinal tract over several weeks, systematically altering the diet and background microbiota complexity. In-transit EcN accumulates genetic mutations that modulate carbohydrate utilization, stress response, and adhesion to gain competitive fitness, while previous exposure to antibiotics reveals an acquisition of resistance. We then leveraged these insights to generate an EcN strain that shows therapeutic efficacy in a mouse model of phenylketonuria and found that it was genetically stable over 1 week, thereby validating EcN’s utility as a chassis for engineering. Collectively, we demonstrate a generalizable pipeline that can be applied to other probiotics to better understand their safety and engineering potential. [Display omitted] •Carbohydrate availability in the gut drives E. coli Nissle adaptation in vivo•Gut monocolonization selects for glycosyl hydrolases enabling population cross-feeding•Mutations that enhance mucin utilization are enriched in low-diversity guts•Prior antibiotic exposure in conventional guts can lead to evolved probiotic resistance E. coli Nissle is a probiotic and chassis for engineered biotherapies, but its adaptive behavior in the gut is unclear. Crook et al. report host-mediated selective pressures modulating carbohydrate utilization and metabolism of E. coli Nissle. This in-host evolution also promotes probiotic survival by enabling effective stress responses during colonization.</description><identifier>ISSN: 1931-3128</identifier><identifier>ISSN: 1934-6069</identifier><identifier>EISSN: 1934-6069</identifier><identifier>DOI: 10.1016/j.chom.2019.02.005</identifier><identifier>PMID: 30926240</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptation, Biological ; Animals ; Disease Models, Animal ; E. coli ; engineering ; Escherichia coli - growth &amp; development ; Escherichia coli - metabolism ; evolution ; Gastrointestinal Agents - administration &amp; dosage ; Gastrointestinal Tract - microbiology ; Metabolism ; Mice ; microbiome ; Mutation ; phenylketonuria ; Phenylketonurias - therapy ; probiotic ; Probiotics - administration &amp; dosage ; Selection, Genetic</subject><ispartof>Cell host &amp; microbe, 2019-04, Vol.25 (4), p.499-512.e8</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-79edf9aea0a5063e7c9058e9c58880770647311aa78c2f87fbd0fa01d2e9f7c73</citedby><cites>FETCH-LOGICAL-c455t-79edf9aea0a5063e7c9058e9c58880770647311aa78c2f87fbd0fa01d2e9f7c73</cites><orcidid>0000-0001-6165-1972 ; 0000-0003-0455-8370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chom.2019.02.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30926240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crook, Nathan</creatorcontrib><creatorcontrib>Ferreiro, Aura</creatorcontrib><creatorcontrib>Gasparrini, Andrew J.</creatorcontrib><creatorcontrib>Pesesky, Mitchell W.</creatorcontrib><creatorcontrib>Gibson, Molly K.</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Sun, Xiaoqing</creatorcontrib><creatorcontrib>Condiotte, Zevin</creatorcontrib><creatorcontrib>Dobrowolski, Stephen</creatorcontrib><creatorcontrib>Peterson, Daniel</creatorcontrib><creatorcontrib>Dantas, Gautam</creatorcontrib><title>Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut</title><title>Cell host &amp; microbe</title><addtitle>Cell Host Microbe</addtitle><description>Probiotics are living microorganisms that are increasingly used as gastrointestinal therapeutics by virtue of their innate or engineered genetic function. Unlike abiotic therapeutics, probiotics can replicate in their intended site, subjecting their genomes and therapeutic properties to natural selection. We exposed the candidate probiotic E. coli Nissle (EcN) to the mouse gastrointestinal tract over several weeks, systematically altering the diet and background microbiota complexity. In-transit EcN accumulates genetic mutations that modulate carbohydrate utilization, stress response, and adhesion to gain competitive fitness, while previous exposure to antibiotics reveals an acquisition of resistance. We then leveraged these insights to generate an EcN strain that shows therapeutic efficacy in a mouse model of phenylketonuria and found that it was genetically stable over 1 week, thereby validating EcN’s utility as a chassis for engineering. Collectively, we demonstrate a generalizable pipeline that can be applied to other probiotics to better understand their safety and engineering potential. [Display omitted] •Carbohydrate availability in the gut drives E. coli Nissle adaptation in vivo•Gut monocolonization selects for glycosyl hydrolases enabling population cross-feeding•Mutations that enhance mucin utilization are enriched in low-diversity guts•Prior antibiotic exposure in conventional guts can lead to evolved probiotic resistance E. coli Nissle is a probiotic and chassis for engineered biotherapies, but its adaptive behavior in the gut is unclear. Crook et al. report host-mediated selective pressures modulating carbohydrate utilization and metabolism of E. coli Nissle. This in-host evolution also promotes probiotic survival by enabling effective stress responses during colonization.</description><subject>Adaptation, Biological</subject><subject>Animals</subject><subject>Disease Models, Animal</subject><subject>E. coli</subject><subject>engineering</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - metabolism</subject><subject>evolution</subject><subject>Gastrointestinal Agents - administration &amp; dosage</subject><subject>Gastrointestinal Tract - microbiology</subject><subject>Metabolism</subject><subject>Mice</subject><subject>microbiome</subject><subject>Mutation</subject><subject>phenylketonuria</subject><subject>Phenylketonurias - therapy</subject><subject>probiotic</subject><subject>Probiotics - administration &amp; dosage</subject><subject>Selection, Genetic</subject><issn>1931-3128</issn><issn>1934-6069</issn><issn>1934-6069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EoqXwAhyQj1wSxk4cxxJCqlalIJUWqXC2vPak61USL7Z3pb4Nz8KT4e22Vblw8sj-5h_P_xPylkHNgHUf1rVdhanmwFQNvAYQz8gxU01bddCp53c1qxrG-yPyKqV1AQRI9pIcNaB4x1s4Jtenzmyy3yG9ztFkvPGYaBhoXiFdmNl5Vy7p9xiWPmRv6Vn957cNo6eXPqURqZ_v0G9mmszozUzPt_k1eTGYMeGb-_OE_Px89mPxpbq4Ov-6OL2obCtErqRCNyiDBoyArkFpFYgelRV934OU0LWyYcwY2Vs-9HJYOhgMMMdRDdLK5oR8OuhutssJncW5rDDqTfSTibc6GK__fZn9St-Ene7aXgpoi8D7e4EYfm0xZT35ZHEczYxhmzTnAFKJVrCC8gNqY0gp4vA4hoHep6HXep-G3qehgetidml69_SDjy0P9hfg4wHAYtPOY9TJepwtOh_RZu2C_5_-X91SnKw</recordid><startdate>20190410</startdate><enddate>20190410</enddate><creator>Crook, Nathan</creator><creator>Ferreiro, Aura</creator><creator>Gasparrini, Andrew J.</creator><creator>Pesesky, Mitchell W.</creator><creator>Gibson, Molly K.</creator><creator>Wang, Bin</creator><creator>Sun, Xiaoqing</creator><creator>Condiotte, Zevin</creator><creator>Dobrowolski, Stephen</creator><creator>Peterson, Daniel</creator><creator>Dantas, Gautam</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6165-1972</orcidid><orcidid>https://orcid.org/0000-0003-0455-8370</orcidid></search><sort><creationdate>20190410</creationdate><title>Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut</title><author>Crook, Nathan ; Ferreiro, Aura ; Gasparrini, Andrew J. ; Pesesky, Mitchell W. ; Gibson, Molly K. ; Wang, Bin ; Sun, Xiaoqing ; Condiotte, Zevin ; Dobrowolski, Stephen ; Peterson, Daniel ; Dantas, Gautam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-79edf9aea0a5063e7c9058e9c58880770647311aa78c2f87fbd0fa01d2e9f7c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation, Biological</topic><topic>Animals</topic><topic>Disease Models, Animal</topic><topic>E. coli</topic><topic>engineering</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - metabolism</topic><topic>evolution</topic><topic>Gastrointestinal Agents - administration &amp; dosage</topic><topic>Gastrointestinal Tract - microbiology</topic><topic>Metabolism</topic><topic>Mice</topic><topic>microbiome</topic><topic>Mutation</topic><topic>phenylketonuria</topic><topic>Phenylketonurias - therapy</topic><topic>probiotic</topic><topic>Probiotics - administration &amp; dosage</topic><topic>Selection, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crook, Nathan</creatorcontrib><creatorcontrib>Ferreiro, Aura</creatorcontrib><creatorcontrib>Gasparrini, Andrew J.</creatorcontrib><creatorcontrib>Pesesky, Mitchell W.</creatorcontrib><creatorcontrib>Gibson, Molly K.</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Sun, Xiaoqing</creatorcontrib><creatorcontrib>Condiotte, Zevin</creatorcontrib><creatorcontrib>Dobrowolski, Stephen</creatorcontrib><creatorcontrib>Peterson, Daniel</creatorcontrib><creatorcontrib>Dantas, Gautam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell host &amp; microbe</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crook, Nathan</au><au>Ferreiro, Aura</au><au>Gasparrini, Andrew J.</au><au>Pesesky, Mitchell W.</au><au>Gibson, Molly K.</au><au>Wang, Bin</au><au>Sun, Xiaoqing</au><au>Condiotte, Zevin</au><au>Dobrowolski, Stephen</au><au>Peterson, Daniel</au><au>Dantas, Gautam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut</atitle><jtitle>Cell host &amp; microbe</jtitle><addtitle>Cell Host Microbe</addtitle><date>2019-04-10</date><risdate>2019</risdate><volume>25</volume><issue>4</issue><spage>499</spage><epage>512.e8</epage><pages>499-512.e8</pages><issn>1931-3128</issn><issn>1934-6069</issn><eissn>1934-6069</eissn><abstract>Probiotics are living microorganisms that are increasingly used as gastrointestinal therapeutics by virtue of their innate or engineered genetic function. Unlike abiotic therapeutics, probiotics can replicate in their intended site, subjecting their genomes and therapeutic properties to natural selection. We exposed the candidate probiotic E. coli Nissle (EcN) to the mouse gastrointestinal tract over several weeks, systematically altering the diet and background microbiota complexity. In-transit EcN accumulates genetic mutations that modulate carbohydrate utilization, stress response, and adhesion to gain competitive fitness, while previous exposure to antibiotics reveals an acquisition of resistance. We then leveraged these insights to generate an EcN strain that shows therapeutic efficacy in a mouse model of phenylketonuria and found that it was genetically stable over 1 week, thereby validating EcN’s utility as a chassis for engineering. Collectively, we demonstrate a generalizable pipeline that can be applied to other probiotics to better understand their safety and engineering potential. [Display omitted] •Carbohydrate availability in the gut drives E. coli Nissle adaptation in vivo•Gut monocolonization selects for glycosyl hydrolases enabling population cross-feeding•Mutations that enhance mucin utilization are enriched in low-diversity guts•Prior antibiotic exposure in conventional guts can lead to evolved probiotic resistance E. coli Nissle is a probiotic and chassis for engineered biotherapies, but its adaptive behavior in the gut is unclear. Crook et al. report host-mediated selective pressures modulating carbohydrate utilization and metabolism of E. coli Nissle. This in-host evolution also promotes probiotic survival by enabling effective stress responses during colonization.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30926240</pmid><doi>10.1016/j.chom.2019.02.005</doi><orcidid>https://orcid.org/0000-0001-6165-1972</orcidid><orcidid>https://orcid.org/0000-0003-0455-8370</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-3128
ispartof Cell host & microbe, 2019-04, Vol.25 (4), p.499-512.e8
issn 1931-3128
1934-6069
1934-6069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487504
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Adaptation, Biological
Animals
Disease Models, Animal
E. coli
engineering
Escherichia coli - growth & development
Escherichia coli - metabolism
evolution
Gastrointestinal Agents - administration & dosage
Gastrointestinal Tract - microbiology
Metabolism
Mice
microbiome
Mutation
phenylketonuria
Phenylketonurias - therapy
probiotic
Probiotics - administration & dosage
Selection, Genetic
title Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Strategies%20of%20the%20Candidate%20Probiotic%20E.%C2%A0coli%20Nissle%20in%20the%20Mammalian%20Gut&rft.jtitle=Cell%20host%20&%20microbe&rft.au=Crook,%20Nathan&rft.date=2019-04-10&rft.volume=25&rft.issue=4&rft.spage=499&rft.epage=512.e8&rft.pages=499-512.e8&rft.issn=1931-3128&rft.eissn=1934-6069&rft_id=info:doi/10.1016/j.chom.2019.02.005&rft_dat=%3Cproquest_pubme%3E2200795451%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200795451&rft_id=info:pmid/30926240&rft_els_id=S1931312819301015&rfr_iscdi=true