Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response

Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2018-10, Vol.24 (10), p.1550-1558
Hauptverfasser: Jiang, Peng, Gu, Shengqing, Pan, Deng, Fu, Jingxin, Sahu, Avinash, Hu, Xihao, Li, Ziyi, Traugh, Nicole, Bu, Xia, Li, Bo, Liu, Jun, Freeman, Gordon J., Brown, Myles A., Wucherpfennig, Kai W., Liu, X. Shirley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1558
container_issue 10
container_start_page 1550
container_title Nature medicine
container_volume 24
creator Jiang, Peng
Gu, Shengqing
Pan, Deng
Fu, Jingxin
Sahu, Avinash
Hu, Xihao
Li, Ziyi
Traugh, Nicole
Bu, Xia
Li, Bo
Liu, Jun
Freeman, Gordon J.
Brown, Myles A.
Wucherpfennig, Kai W.
Liu, X. Shirley
description Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as PD-L1 level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as SERPINB9 , demonstrating utility for immunotherapy research. An algorithm-selected gene signature focused on tumor immune evasion and suppression predicts response to immune checkpoint blockade in melanoma, exceeding the accuracy of current clinical biomarkers.
doi_str_mv 10.1038/s41591-018-0136-1
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573014401</galeid><sourcerecordid>A573014401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c750t-da5a53a031b594bd1bf8e552c8377b381bd9ebd440a0c4a7aff9bff4329b65113</originalsourceid><addsrcrecordid>eNqNkm1r1TAUx4sobk4_gG-kIIi-6Eyapk3eCGP4MBgM3FV8F9L0pDejTe6SRna_vSl3bqtcRULI0-_8k5Pzz7KXGB1jRNj7UGHKcYEwS53UBX6UHWJapUmDfjxOc9SwgnFaH2TPQrhCCBFE-dPsgCBcNoSTw2x1aXorp-gh5E7nq1zBMOTdNuho1WSczaXtcrhRQwzzauOhM2rKlbQKfG7GMVo3rcHLzTZPIhtnAzzPnmg5BHhxOx5l3z59XJ1-Kc4vPp-dnpwXqqFoKjpJJSUSEdxSXrUdbjUDSkvFSNO0hOG249B2VYUkUpVspNa81boiJW9rijE5yj7sdDexHaFTYCcvB7HxZpR-K5w0YnlizVr07qeoK5ZeUCaBt7cC3l1HCJMYTZh_QFpwMYgScVwSxghJ6Os_0CsXvU3piZIRjHFTN_yfVEJKRGnF7qleDiCM1S69Ts1XixPapOKklOfsij1UDzZ99uAsaJO2F_zxHj61Dkaj9ga8WwQkZoKbqZcxBHF2-fX_2YvvS_bNA3YNcpjWwQ1xtlNYgngHKu9C8KDvSoeRmB0udg4XyeFidriYY149rPldxG9LJ6DcASEd2R78fQn-rvoLwT8CPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117205548</pqid></control><display><type>article</type><title>Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jiang, Peng ; Gu, Shengqing ; Pan, Deng ; Fu, Jingxin ; Sahu, Avinash ; Hu, Xihao ; Li, Ziyi ; Traugh, Nicole ; Bu, Xia ; Li, Bo ; Liu, Jun ; Freeman, Gordon J. ; Brown, Myles A. ; Wucherpfennig, Kai W. ; Liu, X. Shirley</creator><creatorcontrib>Jiang, Peng ; Gu, Shengqing ; Pan, Deng ; Fu, Jingxin ; Sahu, Avinash ; Hu, Xihao ; Li, Ziyi ; Traugh, Nicole ; Bu, Xia ; Li, Bo ; Liu, Jun ; Freeman, Gordon J. ; Brown, Myles A. ; Wucherpfennig, Kai W. ; Liu, X. Shirley</creatorcontrib><description>Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as PD-L1 level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as SERPINB9 , demonstrating utility for immunotherapy research. An algorithm-selected gene signature focused on tumor immune evasion and suppression predicts response to immune checkpoint blockade in melanoma, exceeding the accuracy of current clinical biomarkers.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-018-0136-1</identifier><identifier>PMID: 30127393</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114 ; 631/114/2401 ; 631/67/1059/2325 ; Algorithms ; Animals ; Antibodies, Monoclonal - administration &amp; dosage ; B7-H1 Antigen - antagonists &amp; inhibitors ; B7-H1 Antigen - immunology ; Biological markers ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cancer immunotherapy ; Cancer Research ; Cancer treatment ; Care and treatment ; CD8-Positive T-Lymphocytes - drug effects ; CD8-Positive T-Lymphocytes - immunology ; Computer applications ; Computer simulation ; CTLA-4 Antigen - antagonists &amp; inhibitors ; CTLA-4 Antigen - genetics ; CTLA-4 protein ; Cytotoxicity ; Disease Models, Animal ; Gene expression ; Genes ; Genetic aspects ; Humans ; Immune checkpoint ; Immune checkpoint inhibitors ; Immunosuppression ; Immunotherapy ; Immunotherapy - adverse effects ; Infectious Diseases ; Infiltration ; Lymphocytes ; Lymphocytes T ; Lymphocytes, Tumor-Infiltrating - immunology ; Mathematical models ; Medical research ; Melanoma ; Melanoma, Experimental - drug therapy ; Melanoma, Experimental - genetics ; Melanoma, Experimental - immunology ; Melanoma, Experimental - pathology ; Metabolic Diseases ; Metastases ; Mice ; Molecular Medicine ; Neoplasm Proteins - genetics ; Neurosciences ; Patients ; PD-1 protein ; PD-L1 protein ; Regulators ; Retirement benefits ; Ribonucleic acid ; RNA ; RNA sequencing ; Serpins - genetics ; T cells ; T-Lymphocytes, Cytotoxic - drug effects ; T-Lymphocytes, Cytotoxic - immunology ; Tide prediction ; Tumor Microenvironment - drug effects ; Tumor Microenvironment - immunology ; Tumors</subject><ispartof>Nature medicine, 2018-10, Vol.24 (10), p.1550-1558</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2018</rights><rights>The Author(s) 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c750t-da5a53a031b594bd1bf8e552c8377b381bd9ebd440a0c4a7aff9bff4329b65113</citedby><cites>FETCH-LOGICAL-c750t-da5a53a031b594bd1bf8e552c8377b381bd9ebd440a0c4a7aff9bff4329b65113</cites><orcidid>0000-0002-7828-5486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-018-0136-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-018-0136-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30127393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Gu, Shengqing</creatorcontrib><creatorcontrib>Pan, Deng</creatorcontrib><creatorcontrib>Fu, Jingxin</creatorcontrib><creatorcontrib>Sahu, Avinash</creatorcontrib><creatorcontrib>Hu, Xihao</creatorcontrib><creatorcontrib>Li, Ziyi</creatorcontrib><creatorcontrib>Traugh, Nicole</creatorcontrib><creatorcontrib>Bu, Xia</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Freeman, Gordon J.</creatorcontrib><creatorcontrib>Brown, Myles A.</creatorcontrib><creatorcontrib>Wucherpfennig, Kai W.</creatorcontrib><creatorcontrib>Liu, X. Shirley</creatorcontrib><title>Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as PD-L1 level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as SERPINB9 , demonstrating utility for immunotherapy research. An algorithm-selected gene signature focused on tumor immune evasion and suppression predicts response to immune checkpoint blockade in melanoma, exceeding the accuracy of current clinical biomarkers.</description><subject>631/114</subject><subject>631/114/2401</subject><subject>631/67/1059/2325</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - administration &amp; dosage</subject><subject>B7-H1 Antigen - antagonists &amp; inhibitors</subject><subject>B7-H1 Antigen - immunology</subject><subject>Biological markers</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>Cancer Research</subject><subject>Cancer treatment</subject><subject>Care and treatment</subject><subject>CD8-Positive T-Lymphocytes - drug effects</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>CTLA-4 Antigen - antagonists &amp; inhibitors</subject><subject>CTLA-4 Antigen - genetics</subject><subject>CTLA-4 protein</subject><subject>Cytotoxicity</subject><subject>Disease Models, Animal</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Humans</subject><subject>Immune checkpoint</subject><subject>Immune checkpoint inhibitors</subject><subject>Immunosuppression</subject><subject>Immunotherapy</subject><subject>Immunotherapy - adverse effects</subject><subject>Infectious Diseases</subject><subject>Infiltration</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphocytes, Tumor-Infiltrating - immunology</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Melanoma</subject><subject>Melanoma, Experimental - drug therapy</subject><subject>Melanoma, Experimental - genetics</subject><subject>Melanoma, Experimental - immunology</subject><subject>Melanoma, Experimental - pathology</subject><subject>Metabolic Diseases</subject><subject>Metastases</subject><subject>Mice</subject><subject>Molecular Medicine</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neurosciences</subject><subject>Patients</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>Regulators</subject><subject>Retirement benefits</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>Serpins - genetics</subject><subject>T cells</subject><subject>T-Lymphocytes, Cytotoxic - drug effects</subject><subject>T-Lymphocytes, Cytotoxic - immunology</subject><subject>Tide prediction</subject><subject>Tumor Microenvironment - drug effects</subject><subject>Tumor Microenvironment - immunology</subject><subject>Tumors</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkm1r1TAUx4sobk4_gG-kIIi-6Eyapk3eCGP4MBgM3FV8F9L0pDejTe6SRna_vSl3bqtcRULI0-_8k5Pzz7KXGB1jRNj7UGHKcYEwS53UBX6UHWJapUmDfjxOc9SwgnFaH2TPQrhCCBFE-dPsgCBcNoSTw2x1aXorp-gh5E7nq1zBMOTdNuho1WSczaXtcrhRQwzzauOhM2rKlbQKfG7GMVo3rcHLzTZPIhtnAzzPnmg5BHhxOx5l3z59XJ1-Kc4vPp-dnpwXqqFoKjpJJSUSEdxSXrUdbjUDSkvFSNO0hOG249B2VYUkUpVspNa81boiJW9rijE5yj7sdDexHaFTYCcvB7HxZpR-K5w0YnlizVr07qeoK5ZeUCaBt7cC3l1HCJMYTZh_QFpwMYgScVwSxghJ6Os_0CsXvU3piZIRjHFTN_yfVEJKRGnF7qleDiCM1S69Ts1XixPapOKklOfsij1UDzZ99uAsaJO2F_zxHj61Dkaj9ga8WwQkZoKbqZcxBHF2-fX_2YvvS_bNA3YNcpjWwQ1xtlNYgngHKu9C8KDvSoeRmB0udg4XyeFidriYY149rPldxG9LJ6DcASEd2R78fQn-rvoLwT8CPg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Jiang, Peng</creator><creator>Gu, Shengqing</creator><creator>Pan, Deng</creator><creator>Fu, Jingxin</creator><creator>Sahu, Avinash</creator><creator>Hu, Xihao</creator><creator>Li, Ziyi</creator><creator>Traugh, Nicole</creator><creator>Bu, Xia</creator><creator>Li, Bo</creator><creator>Liu, Jun</creator><creator>Freeman, Gordon J.</creator><creator>Brown, Myles A.</creator><creator>Wucherpfennig, Kai W.</creator><creator>Liu, X. Shirley</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7828-5486</orcidid></search><sort><creationdate>20181001</creationdate><title>Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response</title><author>Jiang, Peng ; Gu, Shengqing ; Pan, Deng ; Fu, Jingxin ; Sahu, Avinash ; Hu, Xihao ; Li, Ziyi ; Traugh, Nicole ; Bu, Xia ; Li, Bo ; Liu, Jun ; Freeman, Gordon J. ; Brown, Myles A. ; Wucherpfennig, Kai W. ; Liu, X. Shirley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c750t-da5a53a031b594bd1bf8e552c8377b381bd9ebd440a0c4a7aff9bff4329b65113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/114</topic><topic>631/114/2401</topic><topic>631/67/1059/2325</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - administration &amp; dosage</topic><topic>B7-H1 Antigen - antagonists &amp; inhibitors</topic><topic>B7-H1 Antigen - immunology</topic><topic>Biological markers</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>Cancer Research</topic><topic>Cancer treatment</topic><topic>Care and treatment</topic><topic>CD8-Positive T-Lymphocytes - drug effects</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>CTLA-4 Antigen - antagonists &amp; inhibitors</topic><topic>CTLA-4 Antigen - genetics</topic><topic>CTLA-4 protein</topic><topic>Cytotoxicity</topic><topic>Disease Models, Animal</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Humans</topic><topic>Immune checkpoint</topic><topic>Immune checkpoint inhibitors</topic><topic>Immunosuppression</topic><topic>Immunotherapy</topic><topic>Immunotherapy - adverse effects</topic><topic>Infectious Diseases</topic><topic>Infiltration</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphocytes, Tumor-Infiltrating - immunology</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Melanoma</topic><topic>Melanoma, Experimental - drug therapy</topic><topic>Melanoma, Experimental - genetics</topic><topic>Melanoma, Experimental - immunology</topic><topic>Melanoma, Experimental - pathology</topic><topic>Metabolic Diseases</topic><topic>Metastases</topic><topic>Mice</topic><topic>Molecular Medicine</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neurosciences</topic><topic>Patients</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>Regulators</topic><topic>Retirement benefits</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>Serpins - genetics</topic><topic>T cells</topic><topic>T-Lymphocytes, Cytotoxic - drug effects</topic><topic>T-Lymphocytes, Cytotoxic - immunology</topic><topic>Tide prediction</topic><topic>Tumor Microenvironment - drug effects</topic><topic>Tumor Microenvironment - immunology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Gu, Shengqing</creatorcontrib><creatorcontrib>Pan, Deng</creatorcontrib><creatorcontrib>Fu, Jingxin</creatorcontrib><creatorcontrib>Sahu, Avinash</creatorcontrib><creatorcontrib>Hu, Xihao</creatorcontrib><creatorcontrib>Li, Ziyi</creatorcontrib><creatorcontrib>Traugh, Nicole</creatorcontrib><creatorcontrib>Bu, Xia</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Freeman, Gordon J.</creatorcontrib><creatorcontrib>Brown, Myles A.</creatorcontrib><creatorcontrib>Wucherpfennig, Kai W.</creatorcontrib><creatorcontrib>Liu, X. Shirley</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Peng</au><au>Gu, Shengqing</au><au>Pan, Deng</au><au>Fu, Jingxin</au><au>Sahu, Avinash</au><au>Hu, Xihao</au><au>Li, Ziyi</au><au>Traugh, Nicole</au><au>Bu, Xia</au><au>Li, Bo</au><au>Liu, Jun</au><au>Freeman, Gordon J.</au><au>Brown, Myles A.</au><au>Wucherpfennig, Kai W.</au><au>Liu, X. Shirley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>24</volume><issue>10</issue><spage>1550</spage><epage>1558</epage><pages>1550-1558</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as PD-L1 level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as SERPINB9 , demonstrating utility for immunotherapy research. An algorithm-selected gene signature focused on tumor immune evasion and suppression predicts response to immune checkpoint blockade in melanoma, exceeding the accuracy of current clinical biomarkers.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30127393</pmid><doi>10.1038/s41591-018-0136-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7828-5486</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2018-10, Vol.24 (10), p.1550-1558
issn 1078-8956
1546-170X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487502
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/114
631/114/2401
631/67/1059/2325
Algorithms
Animals
Antibodies, Monoclonal - administration & dosage
B7-H1 Antigen - antagonists & inhibitors
B7-H1 Antigen - immunology
Biological markers
Biomarkers
Biomedical and Life Sciences
Biomedicine
Cancer
Cancer immunotherapy
Cancer Research
Cancer treatment
Care and treatment
CD8-Positive T-Lymphocytes - drug effects
CD8-Positive T-Lymphocytes - immunology
Computer applications
Computer simulation
CTLA-4 Antigen - antagonists & inhibitors
CTLA-4 Antigen - genetics
CTLA-4 protein
Cytotoxicity
Disease Models, Animal
Gene expression
Genes
Genetic aspects
Humans
Immune checkpoint
Immune checkpoint inhibitors
Immunosuppression
Immunotherapy
Immunotherapy - adverse effects
Infectious Diseases
Infiltration
Lymphocytes
Lymphocytes T
Lymphocytes, Tumor-Infiltrating - immunology
Mathematical models
Medical research
Melanoma
Melanoma, Experimental - drug therapy
Melanoma, Experimental - genetics
Melanoma, Experimental - immunology
Melanoma, Experimental - pathology
Metabolic Diseases
Metastases
Mice
Molecular Medicine
Neoplasm Proteins - genetics
Neurosciences
Patients
PD-1 protein
PD-L1 protein
Regulators
Retirement benefits
Ribonucleic acid
RNA
RNA sequencing
Serpins - genetics
T cells
T-Lymphocytes, Cytotoxic - drug effects
T-Lymphocytes, Cytotoxic - immunology
Tide prediction
Tumor Microenvironment - drug effects
Tumor Microenvironment - immunology
Tumors
title Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signatures%20of%20T%20cell%20dysfunction%20and%20exclusion%20predict%20cancer%20immunotherapy%20response&rft.jtitle=Nature%20medicine&rft.au=Jiang,%20Peng&rft.date=2018-10-01&rft.volume=24&rft.issue=10&rft.spage=1550&rft.epage=1558&rft.pages=1550-1558&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-018-0136-1&rft_dat=%3Cgale_pubme%3EA573014401%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117205548&rft_id=info:pmid/30127393&rft_galeid=A573014401&rfr_iscdi=true