Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response
Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dys...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2018-10, Vol.24 (10), p.1550-1558 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1558 |
---|---|
container_issue | 10 |
container_start_page | 1550 |
container_title | Nature medicine |
container_volume | 24 |
creator | Jiang, Peng Gu, Shengqing Pan, Deng Fu, Jingxin Sahu, Avinash Hu, Xihao Li, Ziyi Traugh, Nicole Bu, Xia Li, Bo Liu, Jun Freeman, Gordon J. Brown, Myles A. Wucherpfennig, Kai W. Liu, X. Shirley |
description | Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as
PD-L1
level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as
SERPINB9
, demonstrating utility for immunotherapy research.
An algorithm-selected gene signature focused on tumor immune evasion and suppression predicts response to immune checkpoint blockade in melanoma, exceeding the accuracy of current clinical biomarkers. |
doi_str_mv | 10.1038/s41591-018-0136-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573014401</galeid><sourcerecordid>A573014401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c750t-da5a53a031b594bd1bf8e552c8377b381bd9ebd440a0c4a7aff9bff4329b65113</originalsourceid><addsrcrecordid>eNqNkm1r1TAUx4sobk4_gG-kIIi-6Eyapk3eCGP4MBgM3FV8F9L0pDejTe6SRna_vSl3bqtcRULI0-_8k5Pzz7KXGB1jRNj7UGHKcYEwS53UBX6UHWJapUmDfjxOc9SwgnFaH2TPQrhCCBFE-dPsgCBcNoSTw2x1aXorp-gh5E7nq1zBMOTdNuho1WSczaXtcrhRQwzzauOhM2rKlbQKfG7GMVo3rcHLzTZPIhtnAzzPnmg5BHhxOx5l3z59XJ1-Kc4vPp-dnpwXqqFoKjpJJSUSEdxSXrUdbjUDSkvFSNO0hOG249B2VYUkUpVspNa81boiJW9rijE5yj7sdDexHaFTYCcvB7HxZpR-K5w0YnlizVr07qeoK5ZeUCaBt7cC3l1HCJMYTZh_QFpwMYgScVwSxghJ6Os_0CsXvU3piZIRjHFTN_yfVEJKRGnF7qleDiCM1S69Ts1XixPapOKklOfsij1UDzZ99uAsaJO2F_zxHj61Dkaj9ga8WwQkZoKbqZcxBHF2-fX_2YvvS_bNA3YNcpjWwQ1xtlNYgngHKu9C8KDvSoeRmB0udg4XyeFidriYY149rPldxG9LJ6DcASEd2R78fQn-rvoLwT8CPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117205548</pqid></control><display><type>article</type><title>Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jiang, Peng ; Gu, Shengqing ; Pan, Deng ; Fu, Jingxin ; Sahu, Avinash ; Hu, Xihao ; Li, Ziyi ; Traugh, Nicole ; Bu, Xia ; Li, Bo ; Liu, Jun ; Freeman, Gordon J. ; Brown, Myles A. ; Wucherpfennig, Kai W. ; Liu, X. Shirley</creator><creatorcontrib>Jiang, Peng ; Gu, Shengqing ; Pan, Deng ; Fu, Jingxin ; Sahu, Avinash ; Hu, Xihao ; Li, Ziyi ; Traugh, Nicole ; Bu, Xia ; Li, Bo ; Liu, Jun ; Freeman, Gordon J. ; Brown, Myles A. ; Wucherpfennig, Kai W. ; Liu, X. Shirley</creatorcontrib><description>Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as
PD-L1
level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as
SERPINB9
, demonstrating utility for immunotherapy research.
An algorithm-selected gene signature focused on tumor immune evasion and suppression predicts response to immune checkpoint blockade in melanoma, exceeding the accuracy of current clinical biomarkers.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-018-0136-1</identifier><identifier>PMID: 30127393</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114 ; 631/114/2401 ; 631/67/1059/2325 ; Algorithms ; Animals ; Antibodies, Monoclonal - administration & dosage ; B7-H1 Antigen - antagonists & inhibitors ; B7-H1 Antigen - immunology ; Biological markers ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cancer immunotherapy ; Cancer Research ; Cancer treatment ; Care and treatment ; CD8-Positive T-Lymphocytes - drug effects ; CD8-Positive T-Lymphocytes - immunology ; Computer applications ; Computer simulation ; CTLA-4 Antigen - antagonists & inhibitors ; CTLA-4 Antigen - genetics ; CTLA-4 protein ; Cytotoxicity ; Disease Models, Animal ; Gene expression ; Genes ; Genetic aspects ; Humans ; Immune checkpoint ; Immune checkpoint inhibitors ; Immunosuppression ; Immunotherapy ; Immunotherapy - adverse effects ; Infectious Diseases ; Infiltration ; Lymphocytes ; Lymphocytes T ; Lymphocytes, Tumor-Infiltrating - immunology ; Mathematical models ; Medical research ; Melanoma ; Melanoma, Experimental - drug therapy ; Melanoma, Experimental - genetics ; Melanoma, Experimental - immunology ; Melanoma, Experimental - pathology ; Metabolic Diseases ; Metastases ; Mice ; Molecular Medicine ; Neoplasm Proteins - genetics ; Neurosciences ; Patients ; PD-1 protein ; PD-L1 protein ; Regulators ; Retirement benefits ; Ribonucleic acid ; RNA ; RNA sequencing ; Serpins - genetics ; T cells ; T-Lymphocytes, Cytotoxic - drug effects ; T-Lymphocytes, Cytotoxic - immunology ; Tide prediction ; Tumor Microenvironment - drug effects ; Tumor Microenvironment - immunology ; Tumors</subject><ispartof>Nature medicine, 2018-10, Vol.24 (10), p.1550-1558</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2018</rights><rights>The Author(s) 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c750t-da5a53a031b594bd1bf8e552c8377b381bd9ebd440a0c4a7aff9bff4329b65113</citedby><cites>FETCH-LOGICAL-c750t-da5a53a031b594bd1bf8e552c8377b381bd9ebd440a0c4a7aff9bff4329b65113</cites><orcidid>0000-0002-7828-5486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-018-0136-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-018-0136-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30127393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Gu, Shengqing</creatorcontrib><creatorcontrib>Pan, Deng</creatorcontrib><creatorcontrib>Fu, Jingxin</creatorcontrib><creatorcontrib>Sahu, Avinash</creatorcontrib><creatorcontrib>Hu, Xihao</creatorcontrib><creatorcontrib>Li, Ziyi</creatorcontrib><creatorcontrib>Traugh, Nicole</creatorcontrib><creatorcontrib>Bu, Xia</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Freeman, Gordon J.</creatorcontrib><creatorcontrib>Brown, Myles A.</creatorcontrib><creatorcontrib>Wucherpfennig, Kai W.</creatorcontrib><creatorcontrib>Liu, X. Shirley</creatorcontrib><title>Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as
PD-L1
level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as
SERPINB9
, demonstrating utility for immunotherapy research.
An algorithm-selected gene signature focused on tumor immune evasion and suppression predicts response to immune checkpoint blockade in melanoma, exceeding the accuracy of current clinical biomarkers.</description><subject>631/114</subject><subject>631/114/2401</subject><subject>631/67/1059/2325</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - administration & dosage</subject><subject>B7-H1 Antigen - antagonists & inhibitors</subject><subject>B7-H1 Antigen - immunology</subject><subject>Biological markers</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>Cancer Research</subject><subject>Cancer treatment</subject><subject>Care and treatment</subject><subject>CD8-Positive T-Lymphocytes - drug effects</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>CTLA-4 Antigen - antagonists & inhibitors</subject><subject>CTLA-4 Antigen - genetics</subject><subject>CTLA-4 protein</subject><subject>Cytotoxicity</subject><subject>Disease Models, Animal</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Humans</subject><subject>Immune checkpoint</subject><subject>Immune checkpoint inhibitors</subject><subject>Immunosuppression</subject><subject>Immunotherapy</subject><subject>Immunotherapy - adverse effects</subject><subject>Infectious Diseases</subject><subject>Infiltration</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphocytes, Tumor-Infiltrating - immunology</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Melanoma</subject><subject>Melanoma, Experimental - drug therapy</subject><subject>Melanoma, Experimental - genetics</subject><subject>Melanoma, Experimental - immunology</subject><subject>Melanoma, Experimental - pathology</subject><subject>Metabolic Diseases</subject><subject>Metastases</subject><subject>Mice</subject><subject>Molecular Medicine</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neurosciences</subject><subject>Patients</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>Regulators</subject><subject>Retirement benefits</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>Serpins - genetics</subject><subject>T cells</subject><subject>T-Lymphocytes, Cytotoxic - drug effects</subject><subject>T-Lymphocytes, Cytotoxic - immunology</subject><subject>Tide prediction</subject><subject>Tumor Microenvironment - drug effects</subject><subject>Tumor Microenvironment - immunology</subject><subject>Tumors</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkm1r1TAUx4sobk4_gG-kIIi-6Eyapk3eCGP4MBgM3FV8F9L0pDejTe6SRna_vSl3bqtcRULI0-_8k5Pzz7KXGB1jRNj7UGHKcYEwS53UBX6UHWJapUmDfjxOc9SwgnFaH2TPQrhCCBFE-dPsgCBcNoSTw2x1aXorp-gh5E7nq1zBMOTdNuho1WSczaXtcrhRQwzzauOhM2rKlbQKfG7GMVo3rcHLzTZPIhtnAzzPnmg5BHhxOx5l3z59XJ1-Kc4vPp-dnpwXqqFoKjpJJSUSEdxSXrUdbjUDSkvFSNO0hOG249B2VYUkUpVspNa81boiJW9rijE5yj7sdDexHaFTYCcvB7HxZpR-K5w0YnlizVr07qeoK5ZeUCaBt7cC3l1HCJMYTZh_QFpwMYgScVwSxghJ6Os_0CsXvU3piZIRjHFTN_yfVEJKRGnF7qleDiCM1S69Ts1XixPapOKklOfsij1UDzZ99uAsaJO2F_zxHj61Dkaj9ga8WwQkZoKbqZcxBHF2-fX_2YvvS_bNA3YNcpjWwQ1xtlNYgngHKu9C8KDvSoeRmB0udg4XyeFidriYY149rPldxG9LJ6DcASEd2R78fQn-rvoLwT8CPg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Jiang, Peng</creator><creator>Gu, Shengqing</creator><creator>Pan, Deng</creator><creator>Fu, Jingxin</creator><creator>Sahu, Avinash</creator><creator>Hu, Xihao</creator><creator>Li, Ziyi</creator><creator>Traugh, Nicole</creator><creator>Bu, Xia</creator><creator>Li, Bo</creator><creator>Liu, Jun</creator><creator>Freeman, Gordon J.</creator><creator>Brown, Myles A.</creator><creator>Wucherpfennig, Kai W.</creator><creator>Liu, X. Shirley</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7828-5486</orcidid></search><sort><creationdate>20181001</creationdate><title>Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response</title><author>Jiang, Peng ; Gu, Shengqing ; Pan, Deng ; Fu, Jingxin ; Sahu, Avinash ; Hu, Xihao ; Li, Ziyi ; Traugh, Nicole ; Bu, Xia ; Li, Bo ; Liu, Jun ; Freeman, Gordon J. ; Brown, Myles A. ; Wucherpfennig, Kai W. ; Liu, X. Shirley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c750t-da5a53a031b594bd1bf8e552c8377b381bd9ebd440a0c4a7aff9bff4329b65113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/114</topic><topic>631/114/2401</topic><topic>631/67/1059/2325</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - administration & dosage</topic><topic>B7-H1 Antigen - antagonists & inhibitors</topic><topic>B7-H1 Antigen - immunology</topic><topic>Biological markers</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>Cancer Research</topic><topic>Cancer treatment</topic><topic>Care and treatment</topic><topic>CD8-Positive T-Lymphocytes - drug effects</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>CTLA-4 Antigen - antagonists & inhibitors</topic><topic>CTLA-4 Antigen - genetics</topic><topic>CTLA-4 protein</topic><topic>Cytotoxicity</topic><topic>Disease Models, Animal</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Humans</topic><topic>Immune checkpoint</topic><topic>Immune checkpoint inhibitors</topic><topic>Immunosuppression</topic><topic>Immunotherapy</topic><topic>Immunotherapy - adverse effects</topic><topic>Infectious Diseases</topic><topic>Infiltration</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphocytes, Tumor-Infiltrating - immunology</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Melanoma</topic><topic>Melanoma, Experimental - drug therapy</topic><topic>Melanoma, Experimental - genetics</topic><topic>Melanoma, Experimental - immunology</topic><topic>Melanoma, Experimental - pathology</topic><topic>Metabolic Diseases</topic><topic>Metastases</topic><topic>Mice</topic><topic>Molecular Medicine</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neurosciences</topic><topic>Patients</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>Regulators</topic><topic>Retirement benefits</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>Serpins - genetics</topic><topic>T cells</topic><topic>T-Lymphocytes, Cytotoxic - drug effects</topic><topic>T-Lymphocytes, Cytotoxic - immunology</topic><topic>Tide prediction</topic><topic>Tumor Microenvironment - drug effects</topic><topic>Tumor Microenvironment - immunology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Gu, Shengqing</creatorcontrib><creatorcontrib>Pan, Deng</creatorcontrib><creatorcontrib>Fu, Jingxin</creatorcontrib><creatorcontrib>Sahu, Avinash</creatorcontrib><creatorcontrib>Hu, Xihao</creatorcontrib><creatorcontrib>Li, Ziyi</creatorcontrib><creatorcontrib>Traugh, Nicole</creatorcontrib><creatorcontrib>Bu, Xia</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Freeman, Gordon J.</creatorcontrib><creatorcontrib>Brown, Myles A.</creatorcontrib><creatorcontrib>Wucherpfennig, Kai W.</creatorcontrib><creatorcontrib>Liu, X. Shirley</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Peng</au><au>Gu, Shengqing</au><au>Pan, Deng</au><au>Fu, Jingxin</au><au>Sahu, Avinash</au><au>Hu, Xihao</au><au>Li, Ziyi</au><au>Traugh, Nicole</au><au>Bu, Xia</au><au>Li, Bo</au><au>Liu, Jun</au><au>Freeman, Gordon J.</au><au>Brown, Myles A.</au><au>Wucherpfennig, Kai W.</au><au>Liu, X. Shirley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>24</volume><issue>10</issue><spage>1550</spage><epage>1558</epage><pages>1550-1558</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as
PD-L1
level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as
SERPINB9
, demonstrating utility for immunotherapy research.
An algorithm-selected gene signature focused on tumor immune evasion and suppression predicts response to immune checkpoint blockade in melanoma, exceeding the accuracy of current clinical biomarkers.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30127393</pmid><doi>10.1038/s41591-018-0136-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7828-5486</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2018-10, Vol.24 (10), p.1550-1558 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487502 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/114 631/114/2401 631/67/1059/2325 Algorithms Animals Antibodies, Monoclonal - administration & dosage B7-H1 Antigen - antagonists & inhibitors B7-H1 Antigen - immunology Biological markers Biomarkers Biomedical and Life Sciences Biomedicine Cancer Cancer immunotherapy Cancer Research Cancer treatment Care and treatment CD8-Positive T-Lymphocytes - drug effects CD8-Positive T-Lymphocytes - immunology Computer applications Computer simulation CTLA-4 Antigen - antagonists & inhibitors CTLA-4 Antigen - genetics CTLA-4 protein Cytotoxicity Disease Models, Animal Gene expression Genes Genetic aspects Humans Immune checkpoint Immune checkpoint inhibitors Immunosuppression Immunotherapy Immunotherapy - adverse effects Infectious Diseases Infiltration Lymphocytes Lymphocytes T Lymphocytes, Tumor-Infiltrating - immunology Mathematical models Medical research Melanoma Melanoma, Experimental - drug therapy Melanoma, Experimental - genetics Melanoma, Experimental - immunology Melanoma, Experimental - pathology Metabolic Diseases Metastases Mice Molecular Medicine Neoplasm Proteins - genetics Neurosciences Patients PD-1 protein PD-L1 protein Regulators Retirement benefits Ribonucleic acid RNA RNA sequencing Serpins - genetics T cells T-Lymphocytes, Cytotoxic - drug effects T-Lymphocytes, Cytotoxic - immunology Tide prediction Tumor Microenvironment - drug effects Tumor Microenvironment - immunology Tumors |
title | Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signatures%20of%20T%20cell%20dysfunction%20and%20exclusion%20predict%20cancer%20immunotherapy%20response&rft.jtitle=Nature%20medicine&rft.au=Jiang,%20Peng&rft.date=2018-10-01&rft.volume=24&rft.issue=10&rft.spage=1550&rft.epage=1558&rft.pages=1550-1558&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-018-0136-1&rft_dat=%3Cgale_pubme%3EA573014401%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117205548&rft_id=info:pmid/30127393&rft_galeid=A573014401&rfr_iscdi=true |