SAM68 interaction with U1A modulates U1 snRNP recruitment and regulates mTor pre-mRNA splicing

Abstract Src associated in mitosis (SAM68) plays major roles in regulating RNA processing events, such as alternative splicing and mRNA translation, implicated in several developmental processes. It was previously shown that SAM68 regulates the alternative splicing of the mechanistic target of rapam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2019-05, Vol.47 (8), p.4181-4197
Hauptverfasser: Subramania, Suryasree, Gagné, Laurence M, Campagne, Sébastien, Fort, Victoire, O’Sullivan, Julia, Mocaer, Karel, Feldmüller, Miki, Masson, Jean-Yves, Allain, Frédéric H T, Hussein, Samer M, Huot, Marc-Étienne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4197
container_issue 8
container_start_page 4181
container_title Nucleic acids research
container_volume 47
creator Subramania, Suryasree
Gagné, Laurence M
Campagne, Sébastien
Fort, Victoire
O’Sullivan, Julia
Mocaer, Karel
Feldmüller, Miki
Masson, Jean-Yves
Allain, Frédéric H T
Hussein, Samer M
Huot, Marc-Étienne
description Abstract Src associated in mitosis (SAM68) plays major roles in regulating RNA processing events, such as alternative splicing and mRNA translation, implicated in several developmental processes. It was previously shown that SAM68 regulates the alternative splicing of the mechanistic target of rapamycin (mTor), but the mechanism regulating this process remains elusive. Here, we report that SAM68 interacts with U1 small nuclear ribonucleoprotein (U1 snRNP) to promote splicing at the 5′ splice site in intron 5 of mTor. We also show that this direct interaction is mediated through U1A, a core-component of U1snRNP. SAM68 was found to bind the RRM1 domain of U1A through its C-terminal tyrosine rich region (YY domain). Deletion of the U1A-SAM68 interaction domain or mutation in SAM68-binding sites in intron 5 of mTor abrogates U1A recruitment and 5′ splice site recognition by the U1 snRNP, leading to premature intron 5 termination and polyadenylation. Taken together, our results provide the first mechanistic study by which SAM68 modulates alternative splicing decision, by affecting U1 snRNP recruitment at 5′ splice sites.
doi_str_mv 10.1093/nar/gkz099
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6486544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkz099</oup_id><sourcerecordid>2219000717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-e23aefa9741336cf5ef8fccc1d3cc66aaa543c2fe0eec4bf23d0a4037fa8e6753</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0Eokvhwg9AviABUlp_xUkuSFFFaaVtQaW9YrnOeNeQ2MFOWsGvr6ssFXDgZI39zDMevQi9pOSAkoYfeh0PN99_kaZ5hFaUS1aIRrLHaEU4KQtKRL2HnqX0jRAqaCmeoj1OKlkRRlfo65f2TNbY-QmiNpMLHt-6aYuvaIuH0M29niDlCid_cf4ZRzBxdtMAfsLad7ne7JDhMkQ8RiiGi_MWp7F3xvnNc_TE6j7Bi925j66OP1wenRTrTx9Pj9p1YYRgUwGMa7C6qQTlXBpbgq2tMYZ23Bgptdal4IZZIABGXFvGO6IF4ZXVNciq5Pvo_eId5-sBOpP_F3WvxugGHX-qoJ36-8W7rdqEGyVFLUshsuDtItj-03bSrtX9HRFlJRltbmhm3-yGxfBjhjSpwSUDfa89hDkpljFCSEWrjL5bUBNDShHsg5sSdR-eyuGpJbwMv_pziQf0d1oZeL0AYR7_J7oDv5Cjtg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2219000717</pqid></control><display><type>article</type><title>SAM68 interaction with U1A modulates U1 snRNP recruitment and regulates mTor pre-mRNA splicing</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>DOAJ Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Subramania, Suryasree ; Gagné, Laurence M ; Campagne, Sébastien ; Fort, Victoire ; O’Sullivan, Julia ; Mocaer, Karel ; Feldmüller, Miki ; Masson, Jean-Yves ; Allain, Frédéric H T ; Hussein, Samer M ; Huot, Marc-Étienne</creator><creatorcontrib>Subramania, Suryasree ; Gagné, Laurence M ; Campagne, Sébastien ; Fort, Victoire ; O’Sullivan, Julia ; Mocaer, Karel ; Feldmüller, Miki ; Masson, Jean-Yves ; Allain, Frédéric H T ; Hussein, Samer M ; Huot, Marc-Étienne</creatorcontrib><description>Abstract Src associated in mitosis (SAM68) plays major roles in regulating RNA processing events, such as alternative splicing and mRNA translation, implicated in several developmental processes. It was previously shown that SAM68 regulates the alternative splicing of the mechanistic target of rapamycin (mTor), but the mechanism regulating this process remains elusive. Here, we report that SAM68 interacts with U1 small nuclear ribonucleoprotein (U1 snRNP) to promote splicing at the 5′ splice site in intron 5 of mTor. We also show that this direct interaction is mediated through U1A, a core-component of U1snRNP. SAM68 was found to bind the RRM1 domain of U1A through its C-terminal tyrosine rich region (YY domain). Deletion of the U1A-SAM68 interaction domain or mutation in SAM68-binding sites in intron 5 of mTor abrogates U1A recruitment and 5′ splice site recognition by the U1 snRNP, leading to premature intron 5 termination and polyadenylation. Taken together, our results provide the first mechanistic study by which SAM68 modulates alternative splicing decision, by affecting U1 snRNP recruitment at 5′ splice sites.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkz099</identifier><identifier>PMID: 30767021</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adaptor Proteins, Signal Transducing - deficiency ; Adaptor Proteins, Signal Transducing - genetics ; Amino Acid Sequence ; Animals ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding Sites ; Cell Line ; Exons ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Gene Deletion ; Genes, Reporter ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Humans ; Introns ; Life Sciences ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Mice ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Transport ; Ribonucleoprotein, U1 Small Nuclear - chemistry ; Ribonucleoprotein, U1 Small Nuclear - genetics ; Ribonucleoprotein, U1 Small Nuclear - metabolism ; RNA - genetics ; RNA - metabolism ; RNA and RNA-protein complexes ; RNA Precursors - genetics ; RNA Precursors - metabolism ; RNA Splicing ; RNA-Binding Proteins - genetics ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Nucleic acids research, 2019-05, Vol.47 (8), p.4181-4197</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-e23aefa9741336cf5ef8fccc1d3cc66aaa543c2fe0eec4bf23d0a4037fa8e6753</citedby><cites>FETCH-LOGICAL-c442t-e23aefa9741336cf5ef8fccc1d3cc66aaa543c2fe0eec4bf23d0a4037fa8e6753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486544/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486544/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30767021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04576219$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Subramania, Suryasree</creatorcontrib><creatorcontrib>Gagné, Laurence M</creatorcontrib><creatorcontrib>Campagne, Sébastien</creatorcontrib><creatorcontrib>Fort, Victoire</creatorcontrib><creatorcontrib>O’Sullivan, Julia</creatorcontrib><creatorcontrib>Mocaer, Karel</creatorcontrib><creatorcontrib>Feldmüller, Miki</creatorcontrib><creatorcontrib>Masson, Jean-Yves</creatorcontrib><creatorcontrib>Allain, Frédéric H T</creatorcontrib><creatorcontrib>Hussein, Samer M</creatorcontrib><creatorcontrib>Huot, Marc-Étienne</creatorcontrib><title>SAM68 interaction with U1A modulates U1 snRNP recruitment and regulates mTor pre-mRNA splicing</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract Src associated in mitosis (SAM68) plays major roles in regulating RNA processing events, such as alternative splicing and mRNA translation, implicated in several developmental processes. It was previously shown that SAM68 regulates the alternative splicing of the mechanistic target of rapamycin (mTor), but the mechanism regulating this process remains elusive. Here, we report that SAM68 interacts with U1 small nuclear ribonucleoprotein (U1 snRNP) to promote splicing at the 5′ splice site in intron 5 of mTor. We also show that this direct interaction is mediated through U1A, a core-component of U1snRNP. SAM68 was found to bind the RRM1 domain of U1A through its C-terminal tyrosine rich region (YY domain). Deletion of the U1A-SAM68 interaction domain or mutation in SAM68-binding sites in intron 5 of mTor abrogates U1A recruitment and 5′ splice site recognition by the U1 snRNP, leading to premature intron 5 termination and polyadenylation. Taken together, our results provide the first mechanistic study by which SAM68 modulates alternative splicing decision, by affecting U1 snRNP recruitment at 5′ splice sites.</description><subject>Adaptor Proteins, Signal Transducing - deficiency</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Cell Line</subject><subject>Exons</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Gene Deletion</subject><subject>Genes, Reporter</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humans</subject><subject>Introns</subject><subject>Life Sciences</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Mice</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Transport</subject><subject>Ribonucleoprotein, U1 Small Nuclear - chemistry</subject><subject>Ribonucleoprotein, U1 Small Nuclear - genetics</subject><subject>Ribonucleoprotein, U1 Small Nuclear - metabolism</subject><subject>RNA - genetics</subject><subject>RNA - metabolism</subject><subject>RNA and RNA-protein complexes</subject><subject>RNA Precursors - genetics</subject><subject>RNA Precursors - metabolism</subject><subject>RNA Splicing</subject><subject>RNA-Binding Proteins - genetics</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0Eokvhwg9AviABUlp_xUkuSFFFaaVtQaW9YrnOeNeQ2MFOWsGvr6ssFXDgZI39zDMevQi9pOSAkoYfeh0PN99_kaZ5hFaUS1aIRrLHaEU4KQtKRL2HnqX0jRAqaCmeoj1OKlkRRlfo65f2TNbY-QmiNpMLHt-6aYuvaIuH0M29niDlCid_cf4ZRzBxdtMAfsLad7ne7JDhMkQ8RiiGi_MWp7F3xvnNc_TE6j7Bi925j66OP1wenRTrTx9Pj9p1YYRgUwGMa7C6qQTlXBpbgq2tMYZ23Bgptdal4IZZIABGXFvGO6IF4ZXVNciq5Pvo_eId5-sBOpP_F3WvxugGHX-qoJ36-8W7rdqEGyVFLUshsuDtItj-03bSrtX9HRFlJRltbmhm3-yGxfBjhjSpwSUDfa89hDkpljFCSEWrjL5bUBNDShHsg5sSdR-eyuGpJbwMv_pziQf0d1oZeL0AYR7_J7oDv5Cjtg</recordid><startdate>20190507</startdate><enddate>20190507</enddate><creator>Subramania, Suryasree</creator><creator>Gagné, Laurence M</creator><creator>Campagne, Sébastien</creator><creator>Fort, Victoire</creator><creator>O’Sullivan, Julia</creator><creator>Mocaer, Karel</creator><creator>Feldmüller, Miki</creator><creator>Masson, Jean-Yves</creator><creator>Allain, Frédéric H T</creator><creator>Hussein, Samer M</creator><creator>Huot, Marc-Étienne</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20190507</creationdate><title>SAM68 interaction with U1A modulates U1 snRNP recruitment and regulates mTor pre-mRNA splicing</title><author>Subramania, Suryasree ; Gagné, Laurence M ; Campagne, Sébastien ; Fort, Victoire ; O’Sullivan, Julia ; Mocaer, Karel ; Feldmüller, Miki ; Masson, Jean-Yves ; Allain, Frédéric H T ; Hussein, Samer M ; Huot, Marc-Étienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-e23aefa9741336cf5ef8fccc1d3cc66aaa543c2fe0eec4bf23d0a4037fa8e6753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptor Proteins, Signal Transducing - deficiency</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Cell Line</topic><topic>Exons</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Gene Deletion</topic><topic>Genes, Reporter</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humans</topic><topic>Introns</topic><topic>Life Sciences</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Mice</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Transport</topic><topic>Ribonucleoprotein, U1 Small Nuclear - chemistry</topic><topic>Ribonucleoprotein, U1 Small Nuclear - genetics</topic><topic>Ribonucleoprotein, U1 Small Nuclear - metabolism</topic><topic>RNA - genetics</topic><topic>RNA - metabolism</topic><topic>RNA and RNA-protein complexes</topic><topic>RNA Precursors - genetics</topic><topic>RNA Precursors - metabolism</topic><topic>RNA Splicing</topic><topic>RNA-Binding Proteins - genetics</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramania, Suryasree</creatorcontrib><creatorcontrib>Gagné, Laurence M</creatorcontrib><creatorcontrib>Campagne, Sébastien</creatorcontrib><creatorcontrib>Fort, Victoire</creatorcontrib><creatorcontrib>O’Sullivan, Julia</creatorcontrib><creatorcontrib>Mocaer, Karel</creatorcontrib><creatorcontrib>Feldmüller, Miki</creatorcontrib><creatorcontrib>Masson, Jean-Yves</creatorcontrib><creatorcontrib>Allain, Frédéric H T</creatorcontrib><creatorcontrib>Hussein, Samer M</creatorcontrib><creatorcontrib>Huot, Marc-Étienne</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramania, Suryasree</au><au>Gagné, Laurence M</au><au>Campagne, Sébastien</au><au>Fort, Victoire</au><au>O’Sullivan, Julia</au><au>Mocaer, Karel</au><au>Feldmüller, Miki</au><au>Masson, Jean-Yves</au><au>Allain, Frédéric H T</au><au>Hussein, Samer M</au><au>Huot, Marc-Étienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAM68 interaction with U1A modulates U1 snRNP recruitment and regulates mTor pre-mRNA splicing</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-05-07</date><risdate>2019</risdate><volume>47</volume><issue>8</issue><spage>4181</spage><epage>4197</epage><pages>4181-4197</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Src associated in mitosis (SAM68) plays major roles in regulating RNA processing events, such as alternative splicing and mRNA translation, implicated in several developmental processes. It was previously shown that SAM68 regulates the alternative splicing of the mechanistic target of rapamycin (mTor), but the mechanism regulating this process remains elusive. Here, we report that SAM68 interacts with U1 small nuclear ribonucleoprotein (U1 snRNP) to promote splicing at the 5′ splice site in intron 5 of mTor. We also show that this direct interaction is mediated through U1A, a core-component of U1snRNP. SAM68 was found to bind the RRM1 domain of U1A through its C-terminal tyrosine rich region (YY domain). Deletion of the U1A-SAM68 interaction domain or mutation in SAM68-binding sites in intron 5 of mTor abrogates U1A recruitment and 5′ splice site recognition by the U1 snRNP, leading to premature intron 5 termination and polyadenylation. Taken together, our results provide the first mechanistic study by which SAM68 modulates alternative splicing decision, by affecting U1 snRNP recruitment at 5′ splice sites.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30767021</pmid><doi>10.1093/nar/gkz099</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2019-05, Vol.47 (8), p.4181-4197
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6486544
source Oxford Journals Open Access Collection; MEDLINE; PMC (PubMed Central); DOAJ Directory of Open Access Journals; Free Full-Text Journals in Chemistry
subjects Adaptor Proteins, Signal Transducing - deficiency
Adaptor Proteins, Signal Transducing - genetics
Amino Acid Sequence
Animals
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding Sites
Cell Line
Exons
Fibroblasts - cytology
Fibroblasts - metabolism
Gene Deletion
Genes, Reporter
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Humans
Introns
Life Sciences
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Mice
Protein Binding
Protein Interaction Domains and Motifs
Protein Transport
Ribonucleoprotein, U1 Small Nuclear - chemistry
Ribonucleoprotein, U1 Small Nuclear - genetics
Ribonucleoprotein, U1 Small Nuclear - metabolism
RNA - genetics
RNA - metabolism
RNA and RNA-protein complexes
RNA Precursors - genetics
RNA Precursors - metabolism
RNA Splicing
RNA-Binding Proteins - genetics
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
title SAM68 interaction with U1A modulates U1 snRNP recruitment and regulates mTor pre-mRNA splicing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAM68%20interaction%20with%20U1A%20modulates%20U1%20snRNP%20recruitment%20and%20regulates%20mTor%20pre-mRNA%20splicing&rft.jtitle=Nucleic%20acids%20research&rft.au=Subramania,%20Suryasree&rft.date=2019-05-07&rft.volume=47&rft.issue=8&rft.spage=4181&rft.epage=4197&rft.pages=4181-4197&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkz099&rft_dat=%3Cproquest_pubme%3E2219000717%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2219000717&rft_id=info:pmid/30767021&rft_oup_id=10.1093/nar/gkz099&rfr_iscdi=true