Direction Matters: Monovalent Streptavidin/Biotin Complex under Load

Novel site-specific attachment strategies combined with improvements of computational resources enable new insights into the mechanics of the monovalent biotin/streptavidin complex under load and forced us to rethink the diversity of rupture forces reported in the literature. We discovered that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-06, Vol.19 (6), p.3415-3421
Hauptverfasser: Sedlak, Steffen M, Schendel, Leonard C, Melo, Marcelo C. R, Pippig, Diana A, Luthey-Schulten, Zaida, Gaub, Hermann E, Bernardi, Rafael C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3421
container_issue 6
container_start_page 3415
container_title Nano letters
container_volume 19
creator Sedlak, Steffen M
Schendel, Leonard C
Melo, Marcelo C. R
Pippig, Diana A
Luthey-Schulten, Zaida
Gaub, Hermann E
Bernardi, Rafael C
description Novel site-specific attachment strategies combined with improvements of computational resources enable new insights into the mechanics of the monovalent biotin/streptavidin complex under load and forced us to rethink the diversity of rupture forces reported in the literature. We discovered that the mechanical stability of this complex depends strongly on the geometry in which force is applied. By atomic force microscopy-based single molecule force spectroscopy we found unbinding of biotin to occur beyond 400 pN at force loading rates of 10 nN/s when monovalent streptavidin was tethered at its C-terminus. This value is about twice as high than that for N-terminal attachment. Steered molecular dynamics simulations provided a detailed picture of the mechanics of the unbinding process in the corresponding force loading geometries. Using machine learning techniques, we connected findings from hundreds of simulations to the experimental results, identifying different force propagation pathways. Interestingly, we observed that depending on force loading geometry, partial unfolding of N-terminal region of monovalent streptavidin occurs before biotin is released from the binding pocket.
doi_str_mv 10.1021/acs.nanolett.8b04045
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6486461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126915623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515t-c7276f4db6a9d7ee057c4f5d390a1a30f17361eb9c50a48f94abf503e69a2a963</originalsourceid><addsrcrecordid>eNp9UU1PGzEQtapWfJV_UFV77CVhvP7YuAckmkCLFNRD4WzN7s6C0cYOtjdq_z2LEiJ64TQjzXtv3sxj7AuHKYeSn2GTph596Cnn6awGCVJ9YEdcCZhoY8qP-34mD9lxSo8AYISCA3YoQEjNK3XEFgsXqcku-OIGc6aYvhc3wYcN9uRz8SdHWmfcuNb5sx8uZOeLeVite_pbDL6lWCwDtp_Zpw77RKe7esLuri5v578my98_r-cXywkqrvKkqcpKd7KtNZq2IgJVNbJTrTCAHAV0vBKaU20aBShnnZFYdwoEaYMlGi1O2PlWdz3UK2qb0WHE3q6jW2H8ZwM6-__Euwd7HzZWy5keDx4Fvu0EYngaKGW7cqmhvkdPYUi25KU2XOlSjFC5hTYxpBSp26_hYF8CsGMA9jUAuwtgpH19a3FPev34CIAt4IX-GIbox4-9r_kMomCXRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126915623</pqid></control><display><type>article</type><title>Direction Matters: Monovalent Streptavidin/Biotin Complex under Load</title><source>ACS Publications</source><creator>Sedlak, Steffen M ; Schendel, Leonard C ; Melo, Marcelo C. R ; Pippig, Diana A ; Luthey-Schulten, Zaida ; Gaub, Hermann E ; Bernardi, Rafael C</creator><creatorcontrib>Sedlak, Steffen M ; Schendel, Leonard C ; Melo, Marcelo C. R ; Pippig, Diana A ; Luthey-Schulten, Zaida ; Gaub, Hermann E ; Bernardi, Rafael C</creatorcontrib><description>Novel site-specific attachment strategies combined with improvements of computational resources enable new insights into the mechanics of the monovalent biotin/streptavidin complex under load and forced us to rethink the diversity of rupture forces reported in the literature. We discovered that the mechanical stability of this complex depends strongly on the geometry in which force is applied. By atomic force microscopy-based single molecule force spectroscopy we found unbinding of biotin to occur beyond 400 pN at force loading rates of 10 nN/s when monovalent streptavidin was tethered at its C-terminus. This value is about twice as high than that for N-terminal attachment. Steered molecular dynamics simulations provided a detailed picture of the mechanics of the unbinding process in the corresponding force loading geometries. Using machine learning techniques, we connected findings from hundreds of simulations to the experimental results, identifying different force propagation pathways. Interestingly, we observed that depending on force loading geometry, partial unfolding of N-terminal region of monovalent streptavidin occurs before biotin is released from the binding pocket.</description><identifier>ISSN: 1530-6984</identifier><identifier>ISSN: 1530-6992</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.8b04045</identifier><identifier>PMID: 30346175</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2019-06, Vol.19 (6), p.3415-3421</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a515t-c7276f4db6a9d7ee057c4f5d390a1a30f17361eb9c50a48f94abf503e69a2a963</citedby><cites>FETCH-LOGICAL-a515t-c7276f4db6a9d7ee057c4f5d390a1a30f17361eb9c50a48f94abf503e69a2a963</cites><orcidid>0000-0002-4220-6088 ; 0000-0002-7037-1793 ; 0000-0003-0758-2026 ; 0000-0001-6901-1646 ; 0000-0002-1986-2693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.8b04045$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.8b04045$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30346175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sedlak, Steffen M</creatorcontrib><creatorcontrib>Schendel, Leonard C</creatorcontrib><creatorcontrib>Melo, Marcelo C. R</creatorcontrib><creatorcontrib>Pippig, Diana A</creatorcontrib><creatorcontrib>Luthey-Schulten, Zaida</creatorcontrib><creatorcontrib>Gaub, Hermann E</creatorcontrib><creatorcontrib>Bernardi, Rafael C</creatorcontrib><title>Direction Matters: Monovalent Streptavidin/Biotin Complex under Load</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Novel site-specific attachment strategies combined with improvements of computational resources enable new insights into the mechanics of the monovalent biotin/streptavidin complex under load and forced us to rethink the diversity of rupture forces reported in the literature. We discovered that the mechanical stability of this complex depends strongly on the geometry in which force is applied. By atomic force microscopy-based single molecule force spectroscopy we found unbinding of biotin to occur beyond 400 pN at force loading rates of 10 nN/s when monovalent streptavidin was tethered at its C-terminus. This value is about twice as high than that for N-terminal attachment. Steered molecular dynamics simulations provided a detailed picture of the mechanics of the unbinding process in the corresponding force loading geometries. Using machine learning techniques, we connected findings from hundreds of simulations to the experimental results, identifying different force propagation pathways. Interestingly, we observed that depending on force loading geometry, partial unfolding of N-terminal region of monovalent streptavidin occurs before biotin is released from the binding pocket.</description><issn>1530-6984</issn><issn>1530-6992</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UU1PGzEQtapWfJV_UFV77CVhvP7YuAckmkCLFNRD4WzN7s6C0cYOtjdq_z2LEiJ64TQjzXtv3sxj7AuHKYeSn2GTph596Cnn6awGCVJ9YEdcCZhoY8qP-34mD9lxSo8AYISCA3YoQEjNK3XEFgsXqcku-OIGc6aYvhc3wYcN9uRz8SdHWmfcuNb5sx8uZOeLeVite_pbDL6lWCwDtp_Zpw77RKe7esLuri5v578my98_r-cXywkqrvKkqcpKd7KtNZq2IgJVNbJTrTCAHAV0vBKaU20aBShnnZFYdwoEaYMlGi1O2PlWdz3UK2qb0WHE3q6jW2H8ZwM6-__Euwd7HzZWy5keDx4Fvu0EYngaKGW7cqmhvkdPYUi25KU2XOlSjFC5hTYxpBSp26_hYF8CsGMA9jUAuwtgpH19a3FPev34CIAt4IX-GIbox4-9r_kMomCXRg</recordid><startdate>20190612</startdate><enddate>20190612</enddate><creator>Sedlak, Steffen M</creator><creator>Schendel, Leonard C</creator><creator>Melo, Marcelo C. R</creator><creator>Pippig, Diana A</creator><creator>Luthey-Schulten, Zaida</creator><creator>Gaub, Hermann E</creator><creator>Bernardi, Rafael C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4220-6088</orcidid><orcidid>https://orcid.org/0000-0002-7037-1793</orcidid><orcidid>https://orcid.org/0000-0003-0758-2026</orcidid><orcidid>https://orcid.org/0000-0001-6901-1646</orcidid><orcidid>https://orcid.org/0000-0002-1986-2693</orcidid></search><sort><creationdate>20190612</creationdate><title>Direction Matters: Monovalent Streptavidin/Biotin Complex under Load</title><author>Sedlak, Steffen M ; Schendel, Leonard C ; Melo, Marcelo C. R ; Pippig, Diana A ; Luthey-Schulten, Zaida ; Gaub, Hermann E ; Bernardi, Rafael C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515t-c7276f4db6a9d7ee057c4f5d390a1a30f17361eb9c50a48f94abf503e69a2a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sedlak, Steffen M</creatorcontrib><creatorcontrib>Schendel, Leonard C</creatorcontrib><creatorcontrib>Melo, Marcelo C. R</creatorcontrib><creatorcontrib>Pippig, Diana A</creatorcontrib><creatorcontrib>Luthey-Schulten, Zaida</creatorcontrib><creatorcontrib>Gaub, Hermann E</creatorcontrib><creatorcontrib>Bernardi, Rafael C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sedlak, Steffen M</au><au>Schendel, Leonard C</au><au>Melo, Marcelo C. R</au><au>Pippig, Diana A</au><au>Luthey-Schulten, Zaida</au><au>Gaub, Hermann E</au><au>Bernardi, Rafael C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direction Matters: Monovalent Streptavidin/Biotin Complex under Load</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-06-12</date><risdate>2019</risdate><volume>19</volume><issue>6</issue><spage>3415</spage><epage>3421</epage><pages>3415-3421</pages><issn>1530-6984</issn><issn>1530-6992</issn><eissn>1530-6992</eissn><abstract>Novel site-specific attachment strategies combined with improvements of computational resources enable new insights into the mechanics of the monovalent biotin/streptavidin complex under load and forced us to rethink the diversity of rupture forces reported in the literature. We discovered that the mechanical stability of this complex depends strongly on the geometry in which force is applied. By atomic force microscopy-based single molecule force spectroscopy we found unbinding of biotin to occur beyond 400 pN at force loading rates of 10 nN/s when monovalent streptavidin was tethered at its C-terminus. This value is about twice as high than that for N-terminal attachment. Steered molecular dynamics simulations provided a detailed picture of the mechanics of the unbinding process in the corresponding force loading geometries. Using machine learning techniques, we connected findings from hundreds of simulations to the experimental results, identifying different force propagation pathways. Interestingly, we observed that depending on force loading geometry, partial unfolding of N-terminal region of monovalent streptavidin occurs before biotin is released from the binding pocket.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30346175</pmid><doi>10.1021/acs.nanolett.8b04045</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4220-6088</orcidid><orcidid>https://orcid.org/0000-0002-7037-1793</orcidid><orcidid>https://orcid.org/0000-0003-0758-2026</orcidid><orcidid>https://orcid.org/0000-0001-6901-1646</orcidid><orcidid>https://orcid.org/0000-0002-1986-2693</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-06, Vol.19 (6), p.3415-3421
issn 1530-6984
1530-6992
1530-6992
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6486461
source ACS Publications
title Direction Matters: Monovalent Streptavidin/Biotin Complex under Load
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direction%20Matters:%20Monovalent%20Streptavidin/Biotin%20Complex%20under%20Load&rft.jtitle=Nano%20letters&rft.au=Sedlak,%20Steffen%20M&rft.date=2019-06-12&rft.volume=19&rft.issue=6&rft.spage=3415&rft.epage=3421&rft.pages=3415-3421&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.8b04045&rft_dat=%3Cproquest_pubme%3E2126915623%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126915623&rft_id=info:pmid/30346175&rfr_iscdi=true