Identification of kinetic order parameters for non-equilibrium dynamics
A popular approach to analyze the dynamics of high-dimensional many-body systems, such as macromolecules, is to project the trajectories onto a space of slowly varying collective variables, where subsequent analyses are made, such as clustering or estimation of free energy profiles or Markov state m...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2019-04, Vol.150 (16), p.164120 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 164120 |
container_title | The Journal of chemical physics |
container_volume | 150 |
creator | Paul, Fabian Wu, Hao Vossel, Maximilian de Groot, Bert L. Noé, Frank |
description | A popular approach to analyze the dynamics of high-dimensional many-body systems, such as macromolecules, is to project the trajectories onto a space of slowly varying collective variables, where subsequent analyses are made, such as clustering or estimation of free energy profiles or Markov state models. However, existing “dynamical” dimension reduction methods, such as the time-lagged independent component analysis (TICA), are only valid if the dynamics obeys detailed balance (microscopic reversibility) and typically require long, equilibrated simulation trajectories. Here, we develop a dimension reduction method for non-equilibrium dynamics based on the recently developed Variational Approach for Markov Processes (VAMP) by Wu and Noé. VAMP is illustrated by obtaining a low-dimensional description of a single file ion diffusion model and by identifying long-lived states from molecular dynamics simulations of the KcsA channel protein in an external electrochemical potential. This analysis provides detailed insights into the coupling of conformational dynamics, the configuration of the selectivity filter, and the conductance of the channel. We recommend VAMP as a replacement for the less general TICA method. |
doi_str_mv | 10.1063/1.5083627 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6486394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2215397368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-b1f6c2e9424ecef365b18da61764c58ec8a1c59591f9125b5ef04b7e488214e43</originalsourceid><addsrcrecordid>eNp90U9LHTEUBfBQWurTduEXkIFu2sJobpLJJBtBpFpB6KauQyZzY2NnkmcyI_jtO6_v1f4Bu8ri_jiccAg5BHoMVPITOG6o4pK1L8gKqNJ1KzV9SVaUMqi1pHKP7JdyRymFlonXZI8DFUyDWJHLqx7jFHxwdgopVslX30PEKbgq5R5ztbbZjjhhLpVPuYop1ng_hyF0Ocxj1T9GOwZX3pBX3g4F3-7eA3Jz8enr-ef6-svl1fnZde1Ey6e6Ay8dQy2YQIeey6YD1VsJrRSuUeiUBdfoRoPXwJquQU9F16JQioFAwQ_I6TZ3PXcj9m4pn-1g1jmMNj-aZIP5-xLDN3ObHowUSnK9CXi_C8jpfsYymTEUh8NgI6a5GMZAaa2V0At99w-9S3OOy_c2quG65VIt6sNWuZxKyeifygA1m3kMmN08iz36s_2T_LXHAj5uQXFh-rnIf9OexQ8p_4Zm3Xv-A7iwpsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215397368</pqid></control><display><type>article</type><title>Identification of kinetic order parameters for non-equilibrium dynamics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Paul, Fabian ; Wu, Hao ; Vossel, Maximilian ; de Groot, Bert L. ; Noé, Frank</creator><creatorcontrib>Paul, Fabian ; Wu, Hao ; Vossel, Maximilian ; de Groot, Bert L. ; Noé, Frank</creatorcontrib><description>A popular approach to analyze the dynamics of high-dimensional many-body systems, such as macromolecules, is to project the trajectories onto a space of slowly varying collective variables, where subsequent analyses are made, such as clustering or estimation of free energy profiles or Markov state models. However, existing “dynamical” dimension reduction methods, such as the time-lagged independent component analysis (TICA), are only valid if the dynamics obeys detailed balance (microscopic reversibility) and typically require long, equilibrated simulation trajectories. Here, we develop a dimension reduction method for non-equilibrium dynamics based on the recently developed Variational Approach for Markov Processes (VAMP) by Wu and Noé. VAMP is illustrated by obtaining a low-dimensional description of a single file ion diffusion model and by identifying long-lived states from molecular dynamics simulations of the KcsA channel protein in an external electrochemical potential. This analysis provides detailed insights into the coupling of conformational dynamics, the configuration of the selectivity filter, and the conductance of the channel. We recommend VAMP as a replacement for the less general TICA method.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5083627</identifier><identifier>PMID: 31042914</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Balancing ; Clustering ; Computer simulation ; Coupling (molecular) ; Electrochemical potential ; Free energy ; Independent component analysis ; Ion diffusion ; Macromolecules ; Markov chains ; Molecular dynamics ; Order parameters ; Parameter identification ; Physics ; Proteins ; Reduction ; Resistance ; Selectivity ; Trajectories</subject><ispartof>The Journal of chemical physics, 2019-04, Vol.150 (16), p.164120</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><rights>Copyright © 2019 Author(s) 2019 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-b1f6c2e9424ecef365b18da61764c58ec8a1c59591f9125b5ef04b7e488214e43</citedby><cites>FETCH-LOGICAL-c473t-b1f6c2e9424ecef365b18da61764c58ec8a1c59591f9125b5ef04b7e488214e43</cites><orcidid>0000-0003-4169-9324 ; 0000-0003-3570-3534 ; 0000-0002-1478-1827 ; 0000000214781827 ; 0000000341699324 ; 0000000335703534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5083627$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31042914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paul, Fabian</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Vossel, Maximilian</creatorcontrib><creatorcontrib>de Groot, Bert L.</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><title>Identification of kinetic order parameters for non-equilibrium dynamics</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A popular approach to analyze the dynamics of high-dimensional many-body systems, such as macromolecules, is to project the trajectories onto a space of slowly varying collective variables, where subsequent analyses are made, such as clustering or estimation of free energy profiles or Markov state models. However, existing “dynamical” dimension reduction methods, such as the time-lagged independent component analysis (TICA), are only valid if the dynamics obeys detailed balance (microscopic reversibility) and typically require long, equilibrated simulation trajectories. Here, we develop a dimension reduction method for non-equilibrium dynamics based on the recently developed Variational Approach for Markov Processes (VAMP) by Wu and Noé. VAMP is illustrated by obtaining a low-dimensional description of a single file ion diffusion model and by identifying long-lived states from molecular dynamics simulations of the KcsA channel protein in an external electrochemical potential. This analysis provides detailed insights into the coupling of conformational dynamics, the configuration of the selectivity filter, and the conductance of the channel. We recommend VAMP as a replacement for the less general TICA method.</description><subject>Balancing</subject><subject>Clustering</subject><subject>Computer simulation</subject><subject>Coupling (molecular)</subject><subject>Electrochemical potential</subject><subject>Free energy</subject><subject>Independent component analysis</subject><subject>Ion diffusion</subject><subject>Macromolecules</subject><subject>Markov chains</subject><subject>Molecular dynamics</subject><subject>Order parameters</subject><subject>Parameter identification</subject><subject>Physics</subject><subject>Proteins</subject><subject>Reduction</subject><subject>Resistance</subject><subject>Selectivity</subject><subject>Trajectories</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90U9LHTEUBfBQWurTduEXkIFu2sJobpLJJBtBpFpB6KauQyZzY2NnkmcyI_jtO6_v1f4Bu8ri_jiccAg5BHoMVPITOG6o4pK1L8gKqNJ1KzV9SVaUMqi1pHKP7JdyRymFlonXZI8DFUyDWJHLqx7jFHxwdgopVslX30PEKbgq5R5ztbbZjjhhLpVPuYop1ng_hyF0Ocxj1T9GOwZX3pBX3g4F3-7eA3Jz8enr-ef6-svl1fnZde1Ey6e6Ay8dQy2YQIeey6YD1VsJrRSuUeiUBdfoRoPXwJquQU9F16JQioFAwQ_I6TZ3PXcj9m4pn-1g1jmMNj-aZIP5-xLDN3ObHowUSnK9CXi_C8jpfsYymTEUh8NgI6a5GMZAaa2V0At99w-9S3OOy_c2quG65VIt6sNWuZxKyeifygA1m3kMmN08iz36s_2T_LXHAj5uQXFh-rnIf9OexQ8p_4Zm3Xv-A7iwpsM</recordid><startdate>20190428</startdate><enddate>20190428</enddate><creator>Paul, Fabian</creator><creator>Wu, Hao</creator><creator>Vossel, Maximilian</creator><creator>de Groot, Bert L.</creator><creator>Noé, Frank</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4169-9324</orcidid><orcidid>https://orcid.org/0000-0003-3570-3534</orcidid><orcidid>https://orcid.org/0000-0002-1478-1827</orcidid><orcidid>https://orcid.org/0000000214781827</orcidid><orcidid>https://orcid.org/0000000341699324</orcidid><orcidid>https://orcid.org/0000000335703534</orcidid></search><sort><creationdate>20190428</creationdate><title>Identification of kinetic order parameters for non-equilibrium dynamics</title><author>Paul, Fabian ; Wu, Hao ; Vossel, Maximilian ; de Groot, Bert L. ; Noé, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-b1f6c2e9424ecef365b18da61764c58ec8a1c59591f9125b5ef04b7e488214e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Balancing</topic><topic>Clustering</topic><topic>Computer simulation</topic><topic>Coupling (molecular)</topic><topic>Electrochemical potential</topic><topic>Free energy</topic><topic>Independent component analysis</topic><topic>Ion diffusion</topic><topic>Macromolecules</topic><topic>Markov chains</topic><topic>Molecular dynamics</topic><topic>Order parameters</topic><topic>Parameter identification</topic><topic>Physics</topic><topic>Proteins</topic><topic>Reduction</topic><topic>Resistance</topic><topic>Selectivity</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Fabian</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Vossel, Maximilian</creatorcontrib><creatorcontrib>de Groot, Bert L.</creatorcontrib><creatorcontrib>Noé, Frank</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Fabian</au><au>Wu, Hao</au><au>Vossel, Maximilian</au><au>de Groot, Bert L.</au><au>Noé, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of kinetic order parameters for non-equilibrium dynamics</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-04-28</date><risdate>2019</risdate><volume>150</volume><issue>16</issue><spage>164120</spage><pages>164120-</pages><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>A popular approach to analyze the dynamics of high-dimensional many-body systems, such as macromolecules, is to project the trajectories onto a space of slowly varying collective variables, where subsequent analyses are made, such as clustering or estimation of free energy profiles or Markov state models. However, existing “dynamical” dimension reduction methods, such as the time-lagged independent component analysis (TICA), are only valid if the dynamics obeys detailed balance (microscopic reversibility) and typically require long, equilibrated simulation trajectories. Here, we develop a dimension reduction method for non-equilibrium dynamics based on the recently developed Variational Approach for Markov Processes (VAMP) by Wu and Noé. VAMP is illustrated by obtaining a low-dimensional description of a single file ion diffusion model and by identifying long-lived states from molecular dynamics simulations of the KcsA channel protein in an external electrochemical potential. This analysis provides detailed insights into the coupling of conformational dynamics, the configuration of the selectivity filter, and the conductance of the channel. We recommend VAMP as a replacement for the less general TICA method.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31042914</pmid><doi>10.1063/1.5083627</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4169-9324</orcidid><orcidid>https://orcid.org/0000-0003-3570-3534</orcidid><orcidid>https://orcid.org/0000-0002-1478-1827</orcidid><orcidid>https://orcid.org/0000000214781827</orcidid><orcidid>https://orcid.org/0000000341699324</orcidid><orcidid>https://orcid.org/0000000335703534</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2019-04, Vol.150 (16), p.164120 |
issn | 0021-9606 1089-7690 1089-7690 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6486394 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Balancing Clustering Computer simulation Coupling (molecular) Electrochemical potential Free energy Independent component analysis Ion diffusion Macromolecules Markov chains Molecular dynamics Order parameters Parameter identification Physics Proteins Reduction Resistance Selectivity Trajectories |
title | Identification of kinetic order parameters for non-equilibrium dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20kinetic%20order%20parameters%20for%20non-equilibrium%20dynamics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Paul,%20Fabian&rft.date=2019-04-28&rft.volume=150&rft.issue=16&rft.spage=164120&rft.pages=164120-&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5083627&rft_dat=%3Cproquest_pubme%3E2215397368%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2215397368&rft_id=info:pmid/31042914&rfr_iscdi=true |