Reconstructing the Human Renal Vascular–Tubular Unit In Vitro

Engineered human kidney‐on‐a‐chip platforms show tremendous promise for disease modeling and drug screening. Outstanding challenges exist, however, in reconstructing the complex architecture, cellular make‐up, and matrix composition necessary for the proper modeling of kidney function. Herein, the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2018-12, Vol.7 (23), p.e1801120-n/a
Hauptverfasser: Rayner, Samuel G., Phong, Kiet T., Xue, Jun, Lih, Daniel, Shankland, Stuart J., Kelly, Edward J., Himmelfarb, Jonathan, Zheng, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e1801120
container_title Advanced healthcare materials
container_volume 7
creator Rayner, Samuel G.
Phong, Kiet T.
Xue, Jun
Lih, Daniel
Shankland, Stuart J.
Kelly, Edward J.
Himmelfarb, Jonathan
Zheng, Ying
description Engineered human kidney‐on‐a‐chip platforms show tremendous promise for disease modeling and drug screening. Outstanding challenges exist, however, in reconstructing the complex architecture, cellular make‐up, and matrix composition necessary for the proper modeling of kidney function. Herein, the first fully tunable human kidney‐on‐a‐chip platform is reported that allows the reconstruction of the native architecture of the renal endothelial–epithelial exchange interface using entirely cell‐remodelable matrix and patient‐derived kidney cells. This platform consists of a double‐layer human renal vascular–tubular unit (hRVTU) enabled by a thin collagen membrane that replicates the kidney exchange interface. It is shown that endothelial and epithelial cells lining their respective lumens remodel the membrane in culture into a ≈1 µm thick exchange interface composed of native basement membrane proteins. This interface displays sufficient mechanical integrity for media flow and blood perfusion. As a proof of principle, it is demonstrated that the hRVTU performs kidney‐specific functions including reabsorption of albumin and glucose from the epithelial channel. By incorporating multiple cell populations from single donors, it is demonstrated that the hRVTU may have utility for future precision medicine applications. The success of the system provides new opportunities for the next generation of organ‐on‐a‐chip models. Reliable preclinical models of kidney function are needed for pharmaceutical screening and disease modeling. Herein, a vascular network and tubular pattern are created in perivascular cell containing collagen, opposed across a thin collagen membrane, and lined with kidney endothelial and epithelial cells. This human renal vascular–tubular unit recapitulates basic renal structure and function, showing promise as a next‐generation kidney‐on‐a‐chip platform.
doi_str_mv 10.1002/adhm.201801120
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6478624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127661554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5710-403d5c370b678465badfde02b48b5273f0199e4644bf8d87f2a1c4b0c660d3c13</originalsourceid><addsrcrecordid>eNqFkctKxDAUhoMoKqNbl1Jw46bjSZom7UYZxssII8KgbkOapjMd2nRMWsWd7-Ab-iS2jNbLxmzOgXz5yDk_QgcYhhiAnMh0UQ4J4AgwJrCBdgmOiU9YGG_2PYUdtO_cEtrDQswivI12Agh4TDHbRWczrSrjatuoOjdzr15ob9KU0ngzbWThPUinmkLa99e3uybpOu_e5LV3bbyHvLbVHtrKZOH0_mcdoPvLi7vxxJ_eXl2PR1NfhRyDTyFIQxVwSBiPKAsTmWapBpLQKAkJDzLAcawpozTJojTiGZFY0QQUY5AGCgcDdLr2rpqk1KnSprayECubl9K-iErm4veNyRdiXj0JRnnECG0Fx58CWz022tWizJ3SRSGNrhonCCacMRyGHXr0B11WjW230VE0ZoTzdp4BGq4pZSvnrM76z2AQXTyii0f08bQPDn-O0ONfYbRAvAae80K__KMTo_PJzbf8A2n5m-Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149627740</pqid></control><display><type>article</type><title>Reconstructing the Human Renal Vascular–Tubular Unit In Vitro</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rayner, Samuel G. ; Phong, Kiet T. ; Xue, Jun ; Lih, Daniel ; Shankland, Stuart J. ; Kelly, Edward J. ; Himmelfarb, Jonathan ; Zheng, Ying</creator><creatorcontrib>Rayner, Samuel G. ; Phong, Kiet T. ; Xue, Jun ; Lih, Daniel ; Shankland, Stuart J. ; Kelly, Edward J. ; Himmelfarb, Jonathan ; Zheng, Ying</creatorcontrib><description>Engineered human kidney‐on‐a‐chip platforms show tremendous promise for disease modeling and drug screening. Outstanding challenges exist, however, in reconstructing the complex architecture, cellular make‐up, and matrix composition necessary for the proper modeling of kidney function. Herein, the first fully tunable human kidney‐on‐a‐chip platform is reported that allows the reconstruction of the native architecture of the renal endothelial–epithelial exchange interface using entirely cell‐remodelable matrix and patient‐derived kidney cells. This platform consists of a double‐layer human renal vascular–tubular unit (hRVTU) enabled by a thin collagen membrane that replicates the kidney exchange interface. It is shown that endothelial and epithelial cells lining their respective lumens remodel the membrane in culture into a ≈1 µm thick exchange interface composed of native basement membrane proteins. This interface displays sufficient mechanical integrity for media flow and blood perfusion. As a proof of principle, it is demonstrated that the hRVTU performs kidney‐specific functions including reabsorption of albumin and glucose from the epithelial channel. By incorporating multiple cell populations from single donors, it is demonstrated that the hRVTU may have utility for future precision medicine applications. The success of the system provides new opportunities for the next generation of organ‐on‐a‐chip models. Reliable preclinical models of kidney function are needed for pharmaceutical screening and disease modeling. Herein, a vascular network and tubular pattern are created in perivascular cell containing collagen, opposed across a thin collagen membrane, and lined with kidney endothelial and epithelial cells. This human renal vascular–tubular unit recapitulates basic renal structure and function, showing promise as a next‐generation kidney‐on‐a‐chip platform.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201801120</identifier><identifier>PMID: 30379416</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Architecture ; Biochips ; biomaterials ; Cell culture ; Cells, Cultured ; Collagen ; Collagen Type I - chemistry ; Drug screening ; Epithelial cells ; Epithelial Cells - cytology ; Exchanging ; Human Umbilical Vein Endothelial Cells ; Humans ; Kidney - cytology ; Kidneys ; kidney‐on‐a‐chip ; Lab-On-A-Chip Devices ; Lumens ; Membrane proteins ; microphysiological systems ; Modelling ; organ‐on‐a‐chip ; Perfusion ; Precision medicine ; Proteins ; Rats ; Reabsorption ; Tissue Engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Advanced healthcare materials, 2018-12, Vol.7 (23), p.e1801120-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5710-403d5c370b678465badfde02b48b5273f0199e4644bf8d87f2a1c4b0c660d3c13</citedby><cites>FETCH-LOGICAL-c5710-403d5c370b678465badfde02b48b5273f0199e4644bf8d87f2a1c4b0c660d3c13</cites><orcidid>0000-0003-2723-9022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201801120$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201801120$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30379416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rayner, Samuel G.</creatorcontrib><creatorcontrib>Phong, Kiet T.</creatorcontrib><creatorcontrib>Xue, Jun</creatorcontrib><creatorcontrib>Lih, Daniel</creatorcontrib><creatorcontrib>Shankland, Stuart J.</creatorcontrib><creatorcontrib>Kelly, Edward J.</creatorcontrib><creatorcontrib>Himmelfarb, Jonathan</creatorcontrib><creatorcontrib>Zheng, Ying</creatorcontrib><title>Reconstructing the Human Renal Vascular–Tubular Unit In Vitro</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Engineered human kidney‐on‐a‐chip platforms show tremendous promise for disease modeling and drug screening. Outstanding challenges exist, however, in reconstructing the complex architecture, cellular make‐up, and matrix composition necessary for the proper modeling of kidney function. Herein, the first fully tunable human kidney‐on‐a‐chip platform is reported that allows the reconstruction of the native architecture of the renal endothelial–epithelial exchange interface using entirely cell‐remodelable matrix and patient‐derived kidney cells. This platform consists of a double‐layer human renal vascular–tubular unit (hRVTU) enabled by a thin collagen membrane that replicates the kidney exchange interface. It is shown that endothelial and epithelial cells lining their respective lumens remodel the membrane in culture into a ≈1 µm thick exchange interface composed of native basement membrane proteins. This interface displays sufficient mechanical integrity for media flow and blood perfusion. As a proof of principle, it is demonstrated that the hRVTU performs kidney‐specific functions including reabsorption of albumin and glucose from the epithelial channel. By incorporating multiple cell populations from single donors, it is demonstrated that the hRVTU may have utility for future precision medicine applications. The success of the system provides new opportunities for the next generation of organ‐on‐a‐chip models. Reliable preclinical models of kidney function are needed for pharmaceutical screening and disease modeling. Herein, a vascular network and tubular pattern are created in perivascular cell containing collagen, opposed across a thin collagen membrane, and lined with kidney endothelial and epithelial cells. This human renal vascular–tubular unit recapitulates basic renal structure and function, showing promise as a next‐generation kidney‐on‐a‐chip platform.</description><subject>Animals</subject><subject>Architecture</subject><subject>Biochips</subject><subject>biomaterials</subject><subject>Cell culture</subject><subject>Cells, Cultured</subject><subject>Collagen</subject><subject>Collagen Type I - chemistry</subject><subject>Drug screening</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - cytology</subject><subject>Exchanging</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Kidney - cytology</subject><subject>Kidneys</subject><subject>kidney‐on‐a‐chip</subject><subject>Lab-On-A-Chip Devices</subject><subject>Lumens</subject><subject>Membrane proteins</subject><subject>microphysiological systems</subject><subject>Modelling</subject><subject>organ‐on‐a‐chip</subject><subject>Perfusion</subject><subject>Precision medicine</subject><subject>Proteins</subject><subject>Rats</subject><subject>Reabsorption</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctKxDAUhoMoKqNbl1Jw46bjSZom7UYZxssII8KgbkOapjMd2nRMWsWd7-Ab-iS2jNbLxmzOgXz5yDk_QgcYhhiAnMh0UQ4J4AgwJrCBdgmOiU9YGG_2PYUdtO_cEtrDQswivI12Agh4TDHbRWczrSrjatuoOjdzr15ob9KU0ngzbWThPUinmkLa99e3uybpOu_e5LV3bbyHvLbVHtrKZOH0_mcdoPvLi7vxxJ_eXl2PR1NfhRyDTyFIQxVwSBiPKAsTmWapBpLQKAkJDzLAcawpozTJojTiGZFY0QQUY5AGCgcDdLr2rpqk1KnSprayECubl9K-iErm4veNyRdiXj0JRnnECG0Fx58CWz022tWizJ3SRSGNrhonCCacMRyGHXr0B11WjW230VE0ZoTzdp4BGq4pZSvnrM76z2AQXTyii0f08bQPDn-O0ONfYbRAvAae80K__KMTo_PJzbf8A2n5m-Y</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Rayner, Samuel G.</creator><creator>Phong, Kiet T.</creator><creator>Xue, Jun</creator><creator>Lih, Daniel</creator><creator>Shankland, Stuart J.</creator><creator>Kelly, Edward J.</creator><creator>Himmelfarb, Jonathan</creator><creator>Zheng, Ying</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2723-9022</orcidid></search><sort><creationdate>201812</creationdate><title>Reconstructing the Human Renal Vascular–Tubular Unit In Vitro</title><author>Rayner, Samuel G. ; Phong, Kiet T. ; Xue, Jun ; Lih, Daniel ; Shankland, Stuart J. ; Kelly, Edward J. ; Himmelfarb, Jonathan ; Zheng, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5710-403d5c370b678465badfde02b48b5273f0199e4644bf8d87f2a1c4b0c660d3c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Architecture</topic><topic>Biochips</topic><topic>biomaterials</topic><topic>Cell culture</topic><topic>Cells, Cultured</topic><topic>Collagen</topic><topic>Collagen Type I - chemistry</topic><topic>Drug screening</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - cytology</topic><topic>Exchanging</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Kidney - cytology</topic><topic>Kidneys</topic><topic>kidney‐on‐a‐chip</topic><topic>Lab-On-A-Chip Devices</topic><topic>Lumens</topic><topic>Membrane proteins</topic><topic>microphysiological systems</topic><topic>Modelling</topic><topic>organ‐on‐a‐chip</topic><topic>Perfusion</topic><topic>Precision medicine</topic><topic>Proteins</topic><topic>Rats</topic><topic>Reabsorption</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rayner, Samuel G.</creatorcontrib><creatorcontrib>Phong, Kiet T.</creatorcontrib><creatorcontrib>Xue, Jun</creatorcontrib><creatorcontrib>Lih, Daniel</creatorcontrib><creatorcontrib>Shankland, Stuart J.</creatorcontrib><creatorcontrib>Kelly, Edward J.</creatorcontrib><creatorcontrib>Himmelfarb, Jonathan</creatorcontrib><creatorcontrib>Zheng, Ying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rayner, Samuel G.</au><au>Phong, Kiet T.</au><au>Xue, Jun</au><au>Lih, Daniel</au><au>Shankland, Stuart J.</au><au>Kelly, Edward J.</au><au>Himmelfarb, Jonathan</au><au>Zheng, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstructing the Human Renal Vascular–Tubular Unit In Vitro</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2018-12</date><risdate>2018</risdate><volume>7</volume><issue>23</issue><spage>e1801120</spage><epage>n/a</epage><pages>e1801120-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Engineered human kidney‐on‐a‐chip platforms show tremendous promise for disease modeling and drug screening. Outstanding challenges exist, however, in reconstructing the complex architecture, cellular make‐up, and matrix composition necessary for the proper modeling of kidney function. Herein, the first fully tunable human kidney‐on‐a‐chip platform is reported that allows the reconstruction of the native architecture of the renal endothelial–epithelial exchange interface using entirely cell‐remodelable matrix and patient‐derived kidney cells. This platform consists of a double‐layer human renal vascular–tubular unit (hRVTU) enabled by a thin collagen membrane that replicates the kidney exchange interface. It is shown that endothelial and epithelial cells lining their respective lumens remodel the membrane in culture into a ≈1 µm thick exchange interface composed of native basement membrane proteins. This interface displays sufficient mechanical integrity for media flow and blood perfusion. As a proof of principle, it is demonstrated that the hRVTU performs kidney‐specific functions including reabsorption of albumin and glucose from the epithelial channel. By incorporating multiple cell populations from single donors, it is demonstrated that the hRVTU may have utility for future precision medicine applications. The success of the system provides new opportunities for the next generation of organ‐on‐a‐chip models. Reliable preclinical models of kidney function are needed for pharmaceutical screening and disease modeling. Herein, a vascular network and tubular pattern are created in perivascular cell containing collagen, opposed across a thin collagen membrane, and lined with kidney endothelial and epithelial cells. This human renal vascular–tubular unit recapitulates basic renal structure and function, showing promise as a next‐generation kidney‐on‐a‐chip platform.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30379416</pmid><doi>10.1002/adhm.201801120</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2723-9022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2018-12, Vol.7 (23), p.e1801120-n/a
issn 2192-2640
2192-2659
2192-2659
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6478624
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Architecture
Biochips
biomaterials
Cell culture
Cells, Cultured
Collagen
Collagen Type I - chemistry
Drug screening
Epithelial cells
Epithelial Cells - cytology
Exchanging
Human Umbilical Vein Endothelial Cells
Humans
Kidney - cytology
Kidneys
kidney‐on‐a‐chip
Lab-On-A-Chip Devices
Lumens
Membrane proteins
microphysiological systems
Modelling
organ‐on‐a‐chip
Perfusion
Precision medicine
Proteins
Rats
Reabsorption
Tissue Engineering
Tissue Scaffolds - chemistry
title Reconstructing the Human Renal Vascular–Tubular Unit In Vitro
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstructing%20the%20Human%20Renal%20Vascular%E2%80%93Tubular%20Unit%20In%20Vitro&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Rayner,%20Samuel%20G.&rft.date=2018-12&rft.volume=7&rft.issue=23&rft.spage=e1801120&rft.epage=n/a&rft.pages=e1801120-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201801120&rft_dat=%3Cproquest_pubme%3E2127661554%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149627740&rft_id=info:pmid/30379416&rfr_iscdi=true