Structural covariance across the lifespan: Brain development and aging through the lens of inter‐network relationships

Recent studies have revealed that brain development is marked by morphological synchronization across brain regions. Regions with shared growth trajectories form structural covariance networks (SCNs) that not only map onto functionally identified cognitive systems, but also correlate with a range of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2019-01, Vol.40 (1), p.125-136
Hauptverfasser: Aboud, Katherine S., Huo, Yuankai, Kang, Hakmook, Ealey, Ashley, Resnick, Susan M., Landman, Bennett A., Cutting, Laurie E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 1
container_start_page 125
container_title Human brain mapping
container_volume 40
creator Aboud, Katherine S.
Huo, Yuankai
Kang, Hakmook
Ealey, Ashley
Resnick, Susan M.
Landman, Bennett A.
Cutting, Laurie E.
description Recent studies have revealed that brain development is marked by morphological synchronization across brain regions. Regions with shared growth trajectories form structural covariance networks (SCNs) that not only map onto functionally identified cognitive systems, but also correlate with a range of cognitive abilities across the lifespan. Despite advances in within‐network covariance examinations, few studies have examined lifetime patterns of structural relationships across known SCNs. In the current study, we used a big‐data framework and a novel application of covariate‐adjusted restricted cubic spline regression to identify volumetric network trajectories and covariance patterns across 13 networks (n = 5,019, ages = 7–90). Our findings revealed that typical development and aging are marked by significant shifts in the degree that networks preferentially coordinate with one another (i.e., modularity). Specifically, childhood showed higher modularity of networks compared to adolescence, reflecting a shift over development from segregation to desegregation of inter‐network relationships. The shift from young to middle adulthood was marked by a significant decrease in inter‐network modularity and organization, which continued into older adulthood, potentially reflecting changes in brain organizational efficiency with age. This study is the first to characterize brain development and aging in terms of inter‐network structural covariance across the lifespan.
doi_str_mv 10.1002/hbm.24359
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6478172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154064137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4439-24c7d1497ba570bec84366949e205cbd04249e8c81c7716a356a36feefd784383</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0Eoj-w4AWQJTawSGvHjh2zQKIVUKQiFsDacpzJjUtiBzu5pbs-As_Ik-DblAqQWIw8kr85OjMHoSeUHFFCyuO-GY9Kzip1D-1TomRBqGL3d72oCsUl3UMHKV0QQmlF6EO0xwgTtVLVPvr-aY6LnZdoBmzD1kRnvAVsbAwp4bkHPLgO0mT8S3wSjfO4hS0MYRrBz9j4FpuN85tMxrBs-nUCfMKhw87PEH9e__AwX4b4FUcYzOyCT72b0iP0oDNDgse37yH68vbN59Oz4vzju_enr88LyzlTRcmtbClXsjGVJA3YmjMhFFdQkso2LeFl7mtbUyslFYZVuUQH0LUyozU7RK9W3WlpRmhttp131VN0o4lXOhin__7xrtebsNWCy5rKMgs8vxWI4dsCadajSxaGwXgIS9IlLYWi-fgyo8_-QS_CEn1eL1MVJ4JTtqNerNTNjSN0d2Yo0bs8dc5T3-SZ2ad_ur8jfweYgeMVuHQDXP1fSZ-dfFglfwFvUK0r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154064137</pqid></control><display><type>article</type><title>Structural covariance across the lifespan: Brain development and aging through the lens of inter‐network relationships</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Aboud, Katherine S. ; Huo, Yuankai ; Kang, Hakmook ; Ealey, Ashley ; Resnick, Susan M. ; Landman, Bennett A. ; Cutting, Laurie E.</creator><creatorcontrib>Aboud, Katherine S. ; Huo, Yuankai ; Kang, Hakmook ; Ealey, Ashley ; Resnick, Susan M. ; Landman, Bennett A. ; Cutting, Laurie E.</creatorcontrib><description>Recent studies have revealed that brain development is marked by morphological synchronization across brain regions. Regions with shared growth trajectories form structural covariance networks (SCNs) that not only map onto functionally identified cognitive systems, but also correlate with a range of cognitive abilities across the lifespan. Despite advances in within‐network covariance examinations, few studies have examined lifetime patterns of structural relationships across known SCNs. In the current study, we used a big‐data framework and a novel application of covariate‐adjusted restricted cubic spline regression to identify volumetric network trajectories and covariance patterns across 13 networks (n = 5,019, ages = 7–90). Our findings revealed that typical development and aging are marked by significant shifts in the degree that networks preferentially coordinate with one another (i.e., modularity). Specifically, childhood showed higher modularity of networks compared to adolescence, reflecting a shift over development from segregation to desegregation of inter‐network relationships. The shift from young to middle adulthood was marked by a significant decrease in inter‐network modularity and organization, which continued into older adulthood, potentially reflecting changes in brain organizational efficiency with age. This study is the first to characterize brain development and aging in terms of inter‐network structural covariance across the lifespan.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.24359</identifier><identifier>PMID: 30368995</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adolescent ; Adolescents ; Adult ; Aged ; Aged, 80 and over ; Aging ; Aging - physiology ; Big Data ; Brain ; brain development ; Cerebral Cortex - anatomy &amp; histology ; Cerebral Cortex - diagnostic imaging ; Cerebral Cortex - growth &amp; development ; Cerebral Cortex - physiology ; Child ; Children ; Cognitive ability ; Covariance ; Data processing ; Female ; Human Development - physiology ; Humans ; Life span ; lifespan aging ; Magnetic Resonance Imaging ; Male ; Middle Aged ; Modularity ; MRI ; Nerve Net - anatomy &amp; histology ; Nerve Net - diagnostic imaging ; Nerve Net - physiology ; Networks ; Neuroimaging - methods ; structural covariance ; Synchronism ; Synchronization ; T1w ; Trajectories ; Young Adult</subject><ispartof>Human brain mapping, 2019-01, Vol.40 (1), p.125-136</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4439-24c7d1497ba570bec84366949e205cbd04249e8c81c7716a356a36feefd784383</citedby><cites>FETCH-LOGICAL-c4439-24c7d1497ba570bec84366949e205cbd04249e8c81c7716a356a36feefd784383</cites><orcidid>0000-0002-2362-6028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478172/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478172/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30368995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aboud, Katherine S.</creatorcontrib><creatorcontrib>Huo, Yuankai</creatorcontrib><creatorcontrib>Kang, Hakmook</creatorcontrib><creatorcontrib>Ealey, Ashley</creatorcontrib><creatorcontrib>Resnick, Susan M.</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Cutting, Laurie E.</creatorcontrib><title>Structural covariance across the lifespan: Brain development and aging through the lens of inter‐network relationships</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Recent studies have revealed that brain development is marked by morphological synchronization across brain regions. Regions with shared growth trajectories form structural covariance networks (SCNs) that not only map onto functionally identified cognitive systems, but also correlate with a range of cognitive abilities across the lifespan. Despite advances in within‐network covariance examinations, few studies have examined lifetime patterns of structural relationships across known SCNs. In the current study, we used a big‐data framework and a novel application of covariate‐adjusted restricted cubic spline regression to identify volumetric network trajectories and covariance patterns across 13 networks (n = 5,019, ages = 7–90). Our findings revealed that typical development and aging are marked by significant shifts in the degree that networks preferentially coordinate with one another (i.e., modularity). Specifically, childhood showed higher modularity of networks compared to adolescence, reflecting a shift over development from segregation to desegregation of inter‐network relationships. The shift from young to middle adulthood was marked by a significant decrease in inter‐network modularity and organization, which continued into older adulthood, potentially reflecting changes in brain organizational efficiency with age. This study is the first to characterize brain development and aging in terms of inter‐network structural covariance across the lifespan.</description><subject>Adolescent</subject><subject>Adolescents</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aging</subject><subject>Aging - physiology</subject><subject>Big Data</subject><subject>Brain</subject><subject>brain development</subject><subject>Cerebral Cortex - anatomy &amp; histology</subject><subject>Cerebral Cortex - diagnostic imaging</subject><subject>Cerebral Cortex - growth &amp; development</subject><subject>Cerebral Cortex - physiology</subject><subject>Child</subject><subject>Children</subject><subject>Cognitive ability</subject><subject>Covariance</subject><subject>Data processing</subject><subject>Female</subject><subject>Human Development - physiology</subject><subject>Humans</subject><subject>Life span</subject><subject>lifespan aging</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Modularity</subject><subject>MRI</subject><subject>Nerve Net - anatomy &amp; histology</subject><subject>Nerve Net - diagnostic imaging</subject><subject>Nerve Net - physiology</subject><subject>Networks</subject><subject>Neuroimaging - methods</subject><subject>structural covariance</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>T1w</subject><subject>Trajectories</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1TAQhS0Eoj-w4AWQJTawSGvHjh2zQKIVUKQiFsDacpzJjUtiBzu5pbs-As_Ik-DblAqQWIw8kr85OjMHoSeUHFFCyuO-GY9Kzip1D-1TomRBqGL3d72oCsUl3UMHKV0QQmlF6EO0xwgTtVLVPvr-aY6LnZdoBmzD1kRnvAVsbAwp4bkHPLgO0mT8S3wSjfO4hS0MYRrBz9j4FpuN85tMxrBs-nUCfMKhw87PEH9e__AwX4b4FUcYzOyCT72b0iP0oDNDgse37yH68vbN59Oz4vzju_enr88LyzlTRcmtbClXsjGVJA3YmjMhFFdQkso2LeFl7mtbUyslFYZVuUQH0LUyozU7RK9W3WlpRmhttp131VN0o4lXOhin__7xrtebsNWCy5rKMgs8vxWI4dsCadajSxaGwXgIS9IlLYWi-fgyo8_-QS_CEn1eL1MVJ4JTtqNerNTNjSN0d2Yo0bs8dc5T3-SZ2ad_ur8jfweYgeMVuHQDXP1fSZ-dfFglfwFvUK0r</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Aboud, Katherine S.</creator><creator>Huo, Yuankai</creator><creator>Kang, Hakmook</creator><creator>Ealey, Ashley</creator><creator>Resnick, Susan M.</creator><creator>Landman, Bennett A.</creator><creator>Cutting, Laurie E.</creator><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2362-6028</orcidid></search><sort><creationdate>201901</creationdate><title>Structural covariance across the lifespan: Brain development and aging through the lens of inter‐network relationships</title><author>Aboud, Katherine S. ; Huo, Yuankai ; Kang, Hakmook ; Ealey, Ashley ; Resnick, Susan M. ; Landman, Bennett A. ; Cutting, Laurie E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4439-24c7d1497ba570bec84366949e205cbd04249e8c81c7716a356a36feefd784383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>Adolescents</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aging</topic><topic>Aging - physiology</topic><topic>Big Data</topic><topic>Brain</topic><topic>brain development</topic><topic>Cerebral Cortex - anatomy &amp; histology</topic><topic>Cerebral Cortex - diagnostic imaging</topic><topic>Cerebral Cortex - growth &amp; development</topic><topic>Cerebral Cortex - physiology</topic><topic>Child</topic><topic>Children</topic><topic>Cognitive ability</topic><topic>Covariance</topic><topic>Data processing</topic><topic>Female</topic><topic>Human Development - physiology</topic><topic>Humans</topic><topic>Life span</topic><topic>lifespan aging</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Modularity</topic><topic>MRI</topic><topic>Nerve Net - anatomy &amp; histology</topic><topic>Nerve Net - diagnostic imaging</topic><topic>Nerve Net - physiology</topic><topic>Networks</topic><topic>Neuroimaging - methods</topic><topic>structural covariance</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>T1w</topic><topic>Trajectories</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aboud, Katherine S.</creatorcontrib><creatorcontrib>Huo, Yuankai</creatorcontrib><creatorcontrib>Kang, Hakmook</creatorcontrib><creatorcontrib>Ealey, Ashley</creatorcontrib><creatorcontrib>Resnick, Susan M.</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Cutting, Laurie E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aboud, Katherine S.</au><au>Huo, Yuankai</au><au>Kang, Hakmook</au><au>Ealey, Ashley</au><au>Resnick, Susan M.</au><au>Landman, Bennett A.</au><au>Cutting, Laurie E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural covariance across the lifespan: Brain development and aging through the lens of inter‐network relationships</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2019-01</date><risdate>2019</risdate><volume>40</volume><issue>1</issue><spage>125</spage><epage>136</epage><pages>125-136</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Recent studies have revealed that brain development is marked by morphological synchronization across brain regions. Regions with shared growth trajectories form structural covariance networks (SCNs) that not only map onto functionally identified cognitive systems, but also correlate with a range of cognitive abilities across the lifespan. Despite advances in within‐network covariance examinations, few studies have examined lifetime patterns of structural relationships across known SCNs. In the current study, we used a big‐data framework and a novel application of covariate‐adjusted restricted cubic spline regression to identify volumetric network trajectories and covariance patterns across 13 networks (n = 5,019, ages = 7–90). Our findings revealed that typical development and aging are marked by significant shifts in the degree that networks preferentially coordinate with one another (i.e., modularity). Specifically, childhood showed higher modularity of networks compared to adolescence, reflecting a shift over development from segregation to desegregation of inter‐network relationships. The shift from young to middle adulthood was marked by a significant decrease in inter‐network modularity and organization, which continued into older adulthood, potentially reflecting changes in brain organizational efficiency with age. This study is the first to characterize brain development and aging in terms of inter‐network structural covariance across the lifespan.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30368995</pmid><doi>10.1002/hbm.24359</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2362-6028</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2019-01, Vol.40 (1), p.125-136
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6478172
source MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adolescent
Adolescents
Adult
Aged
Aged, 80 and over
Aging
Aging - physiology
Big Data
Brain
brain development
Cerebral Cortex - anatomy & histology
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - growth & development
Cerebral Cortex - physiology
Child
Children
Cognitive ability
Covariance
Data processing
Female
Human Development - physiology
Humans
Life span
lifespan aging
Magnetic Resonance Imaging
Male
Middle Aged
Modularity
MRI
Nerve Net - anatomy & histology
Nerve Net - diagnostic imaging
Nerve Net - physiology
Networks
Neuroimaging - methods
structural covariance
Synchronism
Synchronization
T1w
Trajectories
Young Adult
title Structural covariance across the lifespan: Brain development and aging through the lens of inter‐network relationships
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20covariance%20across%20the%20lifespan:%20Brain%20development%20and%20aging%20through%20the%20lens%20of%20inter%E2%80%90network%20relationships&rft.jtitle=Human%20brain%20mapping&rft.au=Aboud,%20Katherine%20S.&rft.date=2019-01&rft.volume=40&rft.issue=1&rft.spage=125&rft.epage=136&rft.pages=125-136&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.24359&rft_dat=%3Cproquest_pubme%3E2154064137%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154064137&rft_id=info:pmid/30368995&rfr_iscdi=true