Automated segmentation of trabecular and cortical bone from proton density weighted MRI of the knee
Patient-specific implant design and pre- and intra-operative planning is becoming increasingly important in the orthopaedic field. For clinical feasibility of these techniques, fast and accurate segmentation of bone structures from MRI is essential. However, manual segmentation is time intensive and...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2019-05, Vol.57 (5), p.1015-1027 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1027 |
---|---|
container_issue | 5 |
container_start_page | 1015 |
container_title | Medical & biological engineering & computing |
container_volume | 57 |
creator | Chen, Hao Sprengers, André M. J. Kang, Yan Verdonschot, Nico |
description | Patient-specific implant design and pre- and intra-operative planning is becoming increasingly important in the orthopaedic field. For clinical feasibility of these techniques, fast and accurate segmentation of bone structures from MRI is essential. However, manual segmentation is time intensive and subject to inter- and intra-observer variation. The challenge in developing automatic segmentation algorithms for MRI data mainly exists in the inhomogeneity problem and the low contrast among cortical bone and adjacent tissues. In this paper, we proposed a method for automatic segmentation of knee bone structures for MRI data with a 3D local intensity clustering-based level set and a novel approach to determine the cortical boundary utilizing the normal vector of the trabecular surface. Application to clinical imaging data shows that our method is robust to MRI inhomogeneity. In comparing our method to manual segmentation in 18 femurs and tibiae, we found a dice similarity coefficient (DSC) of 0.9611 ± 0.0052 for the femurs and 0.9591 ± 0.0173 for tibiae. The average surface distance error was 0.4649 ± 0.1430 mm for the femurs and 0.4712 ± 0.2113 mm for the tibiae. The results of the automatic technique thus strongly corresponded to the manual segmentation using less than 3% of the time and with virtually no workload.
Graphical abstract
ᅟ |
doi_str_mv | 10.1007/s11517-018-1936-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6477013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2150234545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-6f03067f4b7fe9db1ea6e19a0763010a49ecfe733a1505da58b1c101cb1ceb183</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhB3BBlrhwCZ2J7XhzQaoqPiq1qlTB2XKcyW5KYi-2U9R_j5ct5UPiNIf3mccevYy9RHiLAPokISrUFeC6wlY0lX7EVqglViClfMxWgBJKiusj9iylG4AaVS2fsiMBqgaAZsXc6ZLDbDP1PNFmJp9tHoPnYeA52o7cMtnIre-5CzGPzk68C574EMPMdzHkwvbk05jv-HcaN9u96fL6_KdgS_yrJ3rOngx2SvTifh6zLx_efz77VF1cfTw_O72onNSQq2YAAY0eZKcHavsOyTaErQXdCECwsiU3kBbCogLVW7Xu0CGgK4M6XItj9u7g3S3dTL0rx0Q7mV0cZxvvTLCj-Tvx49Zswq1ppNaAogje3Ati-LZQymYek6Npsp7CkkyNuq0FyqYu6Ot_0JuwRF_OK5SCWkglVaHwQLkYUoo0PHwGwewrNIcKTanQ7Cs0uuy8-vOKh41fnRWgPgCpRH5D8ffT_7f-AMV_p9U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150234545</pqid></control><display><type>article</type><title>Automated segmentation of trabecular and cortical bone from proton density weighted MRI of the knee</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Chen, Hao ; Sprengers, André M. J. ; Kang, Yan ; Verdonschot, Nico</creator><creatorcontrib>Chen, Hao ; Sprengers, André M. J. ; Kang, Yan ; Verdonschot, Nico</creatorcontrib><description>Patient-specific implant design and pre- and intra-operative planning is becoming increasingly important in the orthopaedic field. For clinical feasibility of these techniques, fast and accurate segmentation of bone structures from MRI is essential. However, manual segmentation is time intensive and subject to inter- and intra-observer variation. The challenge in developing automatic segmentation algorithms for MRI data mainly exists in the inhomogeneity problem and the low contrast among cortical bone and adjacent tissues. In this paper, we proposed a method for automatic segmentation of knee bone structures for MRI data with a 3D local intensity clustering-based level set and a novel approach to determine the cortical boundary utilizing the normal vector of the trabecular surface. Application to clinical imaging data shows that our method is robust to MRI inhomogeneity. In comparing our method to manual segmentation in 18 femurs and tibiae, we found a dice similarity coefficient (DSC) of 0.9611 ± 0.0052 for the femurs and 0.9591 ± 0.0173 for tibiae. The average surface distance error was 0.4649 ± 0.1430 mm for the femurs and 0.4712 ± 0.2113 mm for the tibiae. The results of the automatic technique thus strongly corresponded to the manual segmentation using less than 3% of the time and with virtually no workload.
Graphical abstract
ᅟ</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-018-1936-7</identifier><identifier>PMID: 30520006</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Automation ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Bone density ; Cancellous bone ; Clustering ; Computer Applications ; Cortical bone ; Data processing ; Feasibility studies ; Human Physiology ; Image processing ; Image segmentation ; Imaging ; Inhomogeneity ; Knee ; Magnetic resonance imaging ; Original ; Original Article ; Proton density (concentration) ; Radiology</subject><ispartof>Medical & biological engineering & computing, 2019-05, Vol.57 (5), p.1015-1027</ispartof><rights>The Author(s) 2018</rights><rights>Medical & Biological Engineering & Computing is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-6f03067f4b7fe9db1ea6e19a0763010a49ecfe733a1505da58b1c101cb1ceb183</citedby><cites>FETCH-LOGICAL-c470t-6f03067f4b7fe9db1ea6e19a0763010a49ecfe733a1505da58b1c101cb1ceb183</cites><orcidid>0000-0001-5887-039X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-018-1936-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-018-1936-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30520006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Sprengers, André M. J.</creatorcontrib><creatorcontrib>Kang, Yan</creatorcontrib><creatorcontrib>Verdonschot, Nico</creatorcontrib><title>Automated segmentation of trabecular and cortical bone from proton density weighted MRI of the knee</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Patient-specific implant design and pre- and intra-operative planning is becoming increasingly important in the orthopaedic field. For clinical feasibility of these techniques, fast and accurate segmentation of bone structures from MRI is essential. However, manual segmentation is time intensive and subject to inter- and intra-observer variation. The challenge in developing automatic segmentation algorithms for MRI data mainly exists in the inhomogeneity problem and the low contrast among cortical bone and adjacent tissues. In this paper, we proposed a method for automatic segmentation of knee bone structures for MRI data with a 3D local intensity clustering-based level set and a novel approach to determine the cortical boundary utilizing the normal vector of the trabecular surface. Application to clinical imaging data shows that our method is robust to MRI inhomogeneity. In comparing our method to manual segmentation in 18 femurs and tibiae, we found a dice similarity coefficient (DSC) of 0.9611 ± 0.0052 for the femurs and 0.9591 ± 0.0173 for tibiae. The average surface distance error was 0.4649 ± 0.1430 mm for the femurs and 0.4712 ± 0.2113 mm for the tibiae. The results of the automatic technique thus strongly corresponded to the manual segmentation using less than 3% of the time and with virtually no workload.
Graphical abstract
ᅟ</description><subject>Automation</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Bone density</subject><subject>Cancellous bone</subject><subject>Clustering</subject><subject>Computer Applications</subject><subject>Cortical bone</subject><subject>Data processing</subject><subject>Feasibility studies</subject><subject>Human Physiology</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Inhomogeneity</subject><subject>Knee</subject><subject>Magnetic resonance imaging</subject><subject>Original</subject><subject>Original Article</subject><subject>Proton density (concentration)</subject><subject>Radiology</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1v1DAQhi0EokvhB3BBlrhwCZ2J7XhzQaoqPiq1qlTB2XKcyW5KYi-2U9R_j5ct5UPiNIf3mccevYy9RHiLAPokISrUFeC6wlY0lX7EVqglViClfMxWgBJKiusj9iylG4AaVS2fsiMBqgaAZsXc6ZLDbDP1PNFmJp9tHoPnYeA52o7cMtnIre-5CzGPzk68C574EMPMdzHkwvbk05jv-HcaN9u96fL6_KdgS_yrJ3rOngx2SvTifh6zLx_efz77VF1cfTw_O72onNSQq2YAAY0eZKcHavsOyTaErQXdCECwsiU3kBbCogLVW7Xu0CGgK4M6XItj9u7g3S3dTL0rx0Q7mV0cZxvvTLCj-Tvx49Zswq1ppNaAogje3Ati-LZQymYek6Npsp7CkkyNuq0FyqYu6Ot_0JuwRF_OK5SCWkglVaHwQLkYUoo0PHwGwewrNIcKTanQ7Cs0uuy8-vOKh41fnRWgPgCpRH5D8ffT_7f-AMV_p9U</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Chen, Hao</creator><creator>Sprengers, André M. J.</creator><creator>Kang, Yan</creator><creator>Verdonschot, Nico</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5887-039X</orcidid></search><sort><creationdate>20190501</creationdate><title>Automated segmentation of trabecular and cortical bone from proton density weighted MRI of the knee</title><author>Chen, Hao ; Sprengers, André M. J. ; Kang, Yan ; Verdonschot, Nico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-6f03067f4b7fe9db1ea6e19a0763010a49ecfe733a1505da58b1c101cb1ceb183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automation</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Bone density</topic><topic>Cancellous bone</topic><topic>Clustering</topic><topic>Computer Applications</topic><topic>Cortical bone</topic><topic>Data processing</topic><topic>Feasibility studies</topic><topic>Human Physiology</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Inhomogeneity</topic><topic>Knee</topic><topic>Magnetic resonance imaging</topic><topic>Original</topic><topic>Original Article</topic><topic>Proton density (concentration)</topic><topic>Radiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Sprengers, André M. J.</creatorcontrib><creatorcontrib>Kang, Yan</creatorcontrib><creatorcontrib>Verdonschot, Nico</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hao</au><au>Sprengers, André M. J.</au><au>Kang, Yan</au><au>Verdonschot, Nico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated segmentation of trabecular and cortical bone from proton density weighted MRI of the knee</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>57</volume><issue>5</issue><spage>1015</spage><epage>1027</epage><pages>1015-1027</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Patient-specific implant design and pre- and intra-operative planning is becoming increasingly important in the orthopaedic field. For clinical feasibility of these techniques, fast and accurate segmentation of bone structures from MRI is essential. However, manual segmentation is time intensive and subject to inter- and intra-observer variation. The challenge in developing automatic segmentation algorithms for MRI data mainly exists in the inhomogeneity problem and the low contrast among cortical bone and adjacent tissues. In this paper, we proposed a method for automatic segmentation of knee bone structures for MRI data with a 3D local intensity clustering-based level set and a novel approach to determine the cortical boundary utilizing the normal vector of the trabecular surface. Application to clinical imaging data shows that our method is robust to MRI inhomogeneity. In comparing our method to manual segmentation in 18 femurs and tibiae, we found a dice similarity coefficient (DSC) of 0.9611 ± 0.0052 for the femurs and 0.9591 ± 0.0173 for tibiae. The average surface distance error was 0.4649 ± 0.1430 mm for the femurs and 0.4712 ± 0.2113 mm for the tibiae. The results of the automatic technique thus strongly corresponded to the manual segmentation using less than 3% of the time and with virtually no workload.
Graphical abstract
ᅟ</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30520006</pmid><doi>10.1007/s11517-018-1936-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5887-039X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2019-05, Vol.57 (5), p.1015-1027 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6477013 |
source | Springer Nature - Complete Springer Journals; Business Source Complete |
subjects | Automation Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Bone density Cancellous bone Clustering Computer Applications Cortical bone Data processing Feasibility studies Human Physiology Image processing Image segmentation Imaging Inhomogeneity Knee Magnetic resonance imaging Original Original Article Proton density (concentration) Radiology |
title | Automated segmentation of trabecular and cortical bone from proton density weighted MRI of the knee |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20segmentation%20of%20trabecular%20and%20cortical%20bone%20from%20proton%20density%20weighted%20MRI%20of%20the%20knee&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Chen,%20Hao&rft.date=2019-05-01&rft.volume=57&rft.issue=5&rft.spage=1015&rft.epage=1027&rft.pages=1015-1027&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-018-1936-7&rft_dat=%3Cproquest_pubme%3E2150234545%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150234545&rft_id=info:pmid/30520006&rfr_iscdi=true |