Linking Autophagy to Abiotic and Biotic Stress Responses
Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role...
Gespeichert in:
Veröffentlicht in: | Trends in plant science 2019-05, Vol.24 (5), p.413-430 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 430 |
---|---|
container_issue | 5 |
container_start_page | 413 |
container_title | Trends in plant science |
container_volume | 24 |
creator | Signorelli, Santiago Tarkowski, Łukasz Paweł Van den Ende, Wim Bassham, Diane C. |
description | Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role of SNF-related kinase 1 (SnRK1) and TOR kinases in the regulation of autophagy, abscisic acid (ABA) and its signaling kinase SnRK2 have emerged as key players in the induction of autophagy under stress conditions. Furthermore, an interplay between reactive oxygen species (ROS) and autophagy is observed, ROS being able to induce autophagy and autophagy able to reduce ROS production. We also highlight the importance of osmotic adjustment for the successful performance of autophagy and discuss the potential role of GABA in plant survival and ethylene (ET)-induced autophagy.
Autophagy enhances tolerance to many abiotic stresses and oxidative stress conditions.
The energy sensors SNF-related kinase 1 (SnRK1) and TOR control autophagy under energy deficiency, but also under diverse stress conditions.
Independently of the nutritional state of the cells, the stress-responsive SnRK2 emerges as a new player in the inhibition of TOR and induction of autophagy under stress conditions.
Under biotic stress, autophagy can be advantageous to the host as well as being exploited by the pathogen, depending on the pathosystem considered.
Reactive oxygen species (ROS) contribute to the establishment of autophagy, whereas autophagy contributes to ROS scavenging. |
doi_str_mv | 10.1016/j.tplants.2019.02.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6475611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1360138519300287</els_id><sourcerecordid>2187527331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-49733242a860c172b23b3aafda700dc6379d1ecbfa0234781833094fabb4c5b3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS1UREvLR6DKsT0kjP_FzgW0rYAirYREe7ccx9n1shsH27tSv30dZakKl548st9745kfQh8xVBhw_WlTpXGrhxQrAripgFQA-A06w1LIklFBTnJNaygxlfwUvY9xAwACy_odOqUgCaOcnyG5dMNvN6yKxT75ca1Xj0XyxaJ1PjlT6KErbubyPgUbY_HLxtEP0cYL9LbX22g_HM9z9PDt68PtXbn8-f3H7WJZGk5ZKlkjKCWMaFmDwYK0hLZU677TAqAzNRVNh61pew2EMiGxpBQa1uu2ZYa39Bx9nmPHfbuznbFDCnqrxuB2Ojwqr53692Vwa7XyB1UzwWuMc8D1HLD-z3a3WKrpDljNcUPZYdJeHZsF_2dvY1I7F43d5j1bv4-KEIKBsax-XZo5cJJnn1L5LDXBxxhs__wNDGpiqTbqyFJNLBUQlVlm3-XL0Z9df-FlwZdZYPP-D84GFY2zg7GdC9Yk1Xn3SosnYDaxig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187527331</pqid></control><display><type>article</type><title>Linking Autophagy to Abiotic and Biotic Stress Responses</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Signorelli, Santiago ; Tarkowski, Łukasz Paweł ; Van den Ende, Wim ; Bassham, Diane C.</creator><creatorcontrib>Signorelli, Santiago ; Tarkowski, Łukasz Paweł ; Van den Ende, Wim ; Bassham, Diane C.</creatorcontrib><description>Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role of SNF-related kinase 1 (SnRK1) and TOR kinases in the regulation of autophagy, abscisic acid (ABA) and its signaling kinase SnRK2 have emerged as key players in the induction of autophagy under stress conditions. Furthermore, an interplay between reactive oxygen species (ROS) and autophagy is observed, ROS being able to induce autophagy and autophagy able to reduce ROS production. We also highlight the importance of osmotic adjustment for the successful performance of autophagy and discuss the potential role of GABA in plant survival and ethylene (ET)-induced autophagy.
Autophagy enhances tolerance to many abiotic stresses and oxidative stress conditions.
The energy sensors SNF-related kinase 1 (SnRK1) and TOR control autophagy under energy deficiency, but also under diverse stress conditions.
Independently of the nutritional state of the cells, the stress-responsive SnRK2 emerges as a new player in the inhibition of TOR and induction of autophagy under stress conditions.
Under biotic stress, autophagy can be advantageous to the host as well as being exploited by the pathogen, depending on the pathosystem considered.
Reactive oxygen species (ROS) contribute to the establishment of autophagy, whereas autophagy contributes to ROS scavenging.</description><identifier>ISSN: 1360-1385</identifier><identifier>EISSN: 1878-4372</identifier><identifier>DOI: 10.1016/j.tplants.2019.02.001</identifier><identifier>PMID: 30824355</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>abiotic stress ; Abscisic Acid ; ATG ; Autophagy ; biotic stress ; enzymes ; ethylene ; GABA ; gamma-aminobutyric acid ; Gene Expression Regulation, Plant ; Life Sciences ; Reactive Oxygen Species ; ROS ; Signal Transduction ; SnRK1 ; stress response ; stress tolerance ; Stress, Physiological ; target of rapamycin proteins ; TOR ; vacuoles ; Vegetal Biology</subject><ispartof>Trends in plant science, 2019-05, Vol.24 (5), p.413-430</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-49733242a860c172b23b3aafda700dc6379d1ecbfa0234781833094fabb4c5b3</citedby><cites>FETCH-LOGICAL-c534t-49733242a860c172b23b3aafda700dc6379d1ecbfa0234781833094fabb4c5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1360138519300287$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30824355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04651934$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Signorelli, Santiago</creatorcontrib><creatorcontrib>Tarkowski, Łukasz Paweł</creatorcontrib><creatorcontrib>Van den Ende, Wim</creatorcontrib><creatorcontrib>Bassham, Diane C.</creatorcontrib><title>Linking Autophagy to Abiotic and Biotic Stress Responses</title><title>Trends in plant science</title><addtitle>Trends Plant Sci</addtitle><description>Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role of SNF-related kinase 1 (SnRK1) and TOR kinases in the regulation of autophagy, abscisic acid (ABA) and its signaling kinase SnRK2 have emerged as key players in the induction of autophagy under stress conditions. Furthermore, an interplay between reactive oxygen species (ROS) and autophagy is observed, ROS being able to induce autophagy and autophagy able to reduce ROS production. We also highlight the importance of osmotic adjustment for the successful performance of autophagy and discuss the potential role of GABA in plant survival and ethylene (ET)-induced autophagy.
Autophagy enhances tolerance to many abiotic stresses and oxidative stress conditions.
The energy sensors SNF-related kinase 1 (SnRK1) and TOR control autophagy under energy deficiency, but also under diverse stress conditions.
Independently of the nutritional state of the cells, the stress-responsive SnRK2 emerges as a new player in the inhibition of TOR and induction of autophagy under stress conditions.
Under biotic stress, autophagy can be advantageous to the host as well as being exploited by the pathogen, depending on the pathosystem considered.
Reactive oxygen species (ROS) contribute to the establishment of autophagy, whereas autophagy contributes to ROS scavenging.</description><subject>abiotic stress</subject><subject>Abscisic Acid</subject><subject>ATG</subject><subject>Autophagy</subject><subject>biotic stress</subject><subject>enzymes</subject><subject>ethylene</subject><subject>GABA</subject><subject>gamma-aminobutyric acid</subject><subject>Gene Expression Regulation, Plant</subject><subject>Life Sciences</subject><subject>Reactive Oxygen Species</subject><subject>ROS</subject><subject>Signal Transduction</subject><subject>SnRK1</subject><subject>stress response</subject><subject>stress tolerance</subject><subject>Stress, Physiological</subject><subject>target of rapamycin proteins</subject><subject>TOR</subject><subject>vacuoles</subject><subject>Vegetal Biology</subject><issn>1360-1385</issn><issn>1878-4372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS1UREvLR6DKsT0kjP_FzgW0rYAirYREe7ccx9n1shsH27tSv30dZakKl548st9745kfQh8xVBhw_WlTpXGrhxQrAripgFQA-A06w1LIklFBTnJNaygxlfwUvY9xAwACy_odOqUgCaOcnyG5dMNvN6yKxT75ca1Xj0XyxaJ1PjlT6KErbubyPgUbY_HLxtEP0cYL9LbX22g_HM9z9PDt68PtXbn8-f3H7WJZGk5ZKlkjKCWMaFmDwYK0hLZU677TAqAzNRVNh61pew2EMiGxpBQa1uu2ZYa39Bx9nmPHfbuznbFDCnqrxuB2Ojwqr53692Vwa7XyB1UzwWuMc8D1HLD-z3a3WKrpDljNcUPZYdJeHZsF_2dvY1I7F43d5j1bv4-KEIKBsax-XZo5cJJnn1L5LDXBxxhs__wNDGpiqTbqyFJNLBUQlVlm3-XL0Z9df-FlwZdZYPP-D84GFY2zg7GdC9Yk1Xn3SosnYDaxig</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Signorelli, Santiago</creator><creator>Tarkowski, Łukasz Paweł</creator><creator>Van den Ende, Wim</creator><creator>Bassham, Diane C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20190501</creationdate><title>Linking Autophagy to Abiotic and Biotic Stress Responses</title><author>Signorelli, Santiago ; Tarkowski, Łukasz Paweł ; Van den Ende, Wim ; Bassham, Diane C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-49733242a860c172b23b3aafda700dc6379d1ecbfa0234781833094fabb4c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>abiotic stress</topic><topic>Abscisic Acid</topic><topic>ATG</topic><topic>Autophagy</topic><topic>biotic stress</topic><topic>enzymes</topic><topic>ethylene</topic><topic>GABA</topic><topic>gamma-aminobutyric acid</topic><topic>Gene Expression Regulation, Plant</topic><topic>Life Sciences</topic><topic>Reactive Oxygen Species</topic><topic>ROS</topic><topic>Signal Transduction</topic><topic>SnRK1</topic><topic>stress response</topic><topic>stress tolerance</topic><topic>Stress, Physiological</topic><topic>target of rapamycin proteins</topic><topic>TOR</topic><topic>vacuoles</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Signorelli, Santiago</creatorcontrib><creatorcontrib>Tarkowski, Łukasz Paweł</creatorcontrib><creatorcontrib>Van den Ende, Wim</creatorcontrib><creatorcontrib>Bassham, Diane C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Signorelli, Santiago</au><au>Tarkowski, Łukasz Paweł</au><au>Van den Ende, Wim</au><au>Bassham, Diane C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking Autophagy to Abiotic and Biotic Stress Responses</atitle><jtitle>Trends in plant science</jtitle><addtitle>Trends Plant Sci</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>24</volume><issue>5</issue><spage>413</spage><epage>430</epage><pages>413-430</pages><issn>1360-1385</issn><eissn>1878-4372</eissn><abstract>Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role of SNF-related kinase 1 (SnRK1) and TOR kinases in the regulation of autophagy, abscisic acid (ABA) and its signaling kinase SnRK2 have emerged as key players in the induction of autophagy under stress conditions. Furthermore, an interplay between reactive oxygen species (ROS) and autophagy is observed, ROS being able to induce autophagy and autophagy able to reduce ROS production. We also highlight the importance of osmotic adjustment for the successful performance of autophagy and discuss the potential role of GABA in plant survival and ethylene (ET)-induced autophagy.
Autophagy enhances tolerance to many abiotic stresses and oxidative stress conditions.
The energy sensors SNF-related kinase 1 (SnRK1) and TOR control autophagy under energy deficiency, but also under diverse stress conditions.
Independently of the nutritional state of the cells, the stress-responsive SnRK2 emerges as a new player in the inhibition of TOR and induction of autophagy under stress conditions.
Under biotic stress, autophagy can be advantageous to the host as well as being exploited by the pathogen, depending on the pathosystem considered.
Reactive oxygen species (ROS) contribute to the establishment of autophagy, whereas autophagy contributes to ROS scavenging.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30824355</pmid><doi>10.1016/j.tplants.2019.02.001</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1360-1385 |
ispartof | Trends in plant science, 2019-05, Vol.24 (5), p.413-430 |
issn | 1360-1385 1878-4372 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6475611 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | abiotic stress Abscisic Acid ATG Autophagy biotic stress enzymes ethylene GABA gamma-aminobutyric acid Gene Expression Regulation, Plant Life Sciences Reactive Oxygen Species ROS Signal Transduction SnRK1 stress response stress tolerance Stress, Physiological target of rapamycin proteins TOR vacuoles Vegetal Biology |
title | Linking Autophagy to Abiotic and Biotic Stress Responses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20Autophagy%20to%20Abiotic%20and%20Biotic%20Stress%20Responses&rft.jtitle=Trends%20in%20plant%20science&rft.au=Signorelli,%20Santiago&rft.date=2019-05-01&rft.volume=24&rft.issue=5&rft.spage=413&rft.epage=430&rft.pages=413-430&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016/j.tplants.2019.02.001&rft_dat=%3Cproquest_pubme%3E2187527331%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187527331&rft_id=info:pmid/30824355&rft_els_id=S1360138519300287&rfr_iscdi=true |