Linking Autophagy to Abiotic and Biotic Stress Responses

Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in plant science 2019-05, Vol.24 (5), p.413-430
Hauptverfasser: Signorelli, Santiago, Tarkowski, Łukasz Paweł, Van den Ende, Wim, Bassham, Diane C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 5
container_start_page 413
container_title Trends in plant science
container_volume 24
creator Signorelli, Santiago
Tarkowski, Łukasz Paweł
Van den Ende, Wim
Bassham, Diane C.
description Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role of SNF-related kinase 1 (SnRK1) and TOR kinases in the regulation of autophagy, abscisic acid (ABA) and its signaling kinase SnRK2 have emerged as key players in the induction of autophagy under stress conditions. Furthermore, an interplay between reactive oxygen species (ROS) and autophagy is observed, ROS being able to induce autophagy and autophagy able to reduce ROS production. We also highlight the importance of osmotic adjustment for the successful performance of autophagy and discuss the potential role of GABA in plant survival and ethylene (ET)-induced autophagy. Autophagy enhances tolerance to many abiotic stresses and oxidative stress conditions. The energy sensors SNF-related kinase 1 (SnRK1) and TOR control autophagy under energy deficiency, but also under diverse stress conditions. Independently of the nutritional state of the cells, the stress-responsive SnRK2 emerges as a new player in the inhibition of TOR and induction of autophagy under stress conditions. Under biotic stress, autophagy can be advantageous to the host as well as being exploited by the pathogen, depending on the pathosystem considered. Reactive oxygen species (ROS) contribute to the establishment of autophagy, whereas autophagy contributes to ROS scavenging.
doi_str_mv 10.1016/j.tplants.2019.02.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6475611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1360138519300287</els_id><sourcerecordid>2187527331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-49733242a860c172b23b3aafda700dc6379d1ecbfa0234781833094fabb4c5b3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS1UREvLR6DKsT0kjP_FzgW0rYAirYREe7ccx9n1shsH27tSv30dZakKl548st9745kfQh8xVBhw_WlTpXGrhxQrAripgFQA-A06w1LIklFBTnJNaygxlfwUvY9xAwACy_odOqUgCaOcnyG5dMNvN6yKxT75ca1Xj0XyxaJ1PjlT6KErbubyPgUbY_HLxtEP0cYL9LbX22g_HM9z9PDt68PtXbn8-f3H7WJZGk5ZKlkjKCWMaFmDwYK0hLZU677TAqAzNRVNh61pew2EMiGxpBQa1uu2ZYa39Bx9nmPHfbuznbFDCnqrxuB2Ojwqr53692Vwa7XyB1UzwWuMc8D1HLD-z3a3WKrpDljNcUPZYdJeHZsF_2dvY1I7F43d5j1bv4-KEIKBsax-XZo5cJJnn1L5LDXBxxhs__wNDGpiqTbqyFJNLBUQlVlm3-XL0Z9df-FlwZdZYPP-D84GFY2zg7GdC9Yk1Xn3SosnYDaxig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187527331</pqid></control><display><type>article</type><title>Linking Autophagy to Abiotic and Biotic Stress Responses</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Signorelli, Santiago ; Tarkowski, Łukasz Paweł ; Van den Ende, Wim ; Bassham, Diane C.</creator><creatorcontrib>Signorelli, Santiago ; Tarkowski, Łukasz Paweł ; Van den Ende, Wim ; Bassham, Diane C.</creatorcontrib><description>Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role of SNF-related kinase 1 (SnRK1) and TOR kinases in the regulation of autophagy, abscisic acid (ABA) and its signaling kinase SnRK2 have emerged as key players in the induction of autophagy under stress conditions. Furthermore, an interplay between reactive oxygen species (ROS) and autophagy is observed, ROS being able to induce autophagy and autophagy able to reduce ROS production. We also highlight the importance of osmotic adjustment for the successful performance of autophagy and discuss the potential role of GABA in plant survival and ethylene (ET)-induced autophagy. Autophagy enhances tolerance to many abiotic stresses and oxidative stress conditions. The energy sensors SNF-related kinase 1 (SnRK1) and TOR control autophagy under energy deficiency, but also under diverse stress conditions. Independently of the nutritional state of the cells, the stress-responsive SnRK2 emerges as a new player in the inhibition of TOR and induction of autophagy under stress conditions. Under biotic stress, autophagy can be advantageous to the host as well as being exploited by the pathogen, depending on the pathosystem considered. Reactive oxygen species (ROS) contribute to the establishment of autophagy, whereas autophagy contributes to ROS scavenging.</description><identifier>ISSN: 1360-1385</identifier><identifier>EISSN: 1878-4372</identifier><identifier>DOI: 10.1016/j.tplants.2019.02.001</identifier><identifier>PMID: 30824355</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>abiotic stress ; Abscisic Acid ; ATG ; Autophagy ; biotic stress ; enzymes ; ethylene ; GABA ; gamma-aminobutyric acid ; Gene Expression Regulation, Plant ; Life Sciences ; Reactive Oxygen Species ; ROS ; Signal Transduction ; SnRK1 ; stress response ; stress tolerance ; Stress, Physiological ; target of rapamycin proteins ; TOR ; vacuoles ; Vegetal Biology</subject><ispartof>Trends in plant science, 2019-05, Vol.24 (5), p.413-430</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-49733242a860c172b23b3aafda700dc6379d1ecbfa0234781833094fabb4c5b3</citedby><cites>FETCH-LOGICAL-c534t-49733242a860c172b23b3aafda700dc6379d1ecbfa0234781833094fabb4c5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1360138519300287$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30824355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04651934$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Signorelli, Santiago</creatorcontrib><creatorcontrib>Tarkowski, Łukasz Paweł</creatorcontrib><creatorcontrib>Van den Ende, Wim</creatorcontrib><creatorcontrib>Bassham, Diane C.</creatorcontrib><title>Linking Autophagy to Abiotic and Biotic Stress Responses</title><title>Trends in plant science</title><addtitle>Trends Plant Sci</addtitle><description>Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role of SNF-related kinase 1 (SnRK1) and TOR kinases in the regulation of autophagy, abscisic acid (ABA) and its signaling kinase SnRK2 have emerged as key players in the induction of autophagy under stress conditions. Furthermore, an interplay between reactive oxygen species (ROS) and autophagy is observed, ROS being able to induce autophagy and autophagy able to reduce ROS production. We also highlight the importance of osmotic adjustment for the successful performance of autophagy and discuss the potential role of GABA in plant survival and ethylene (ET)-induced autophagy. Autophagy enhances tolerance to many abiotic stresses and oxidative stress conditions. The energy sensors SNF-related kinase 1 (SnRK1) and TOR control autophagy under energy deficiency, but also under diverse stress conditions. Independently of the nutritional state of the cells, the stress-responsive SnRK2 emerges as a new player in the inhibition of TOR and induction of autophagy under stress conditions. Under biotic stress, autophagy can be advantageous to the host as well as being exploited by the pathogen, depending on the pathosystem considered. Reactive oxygen species (ROS) contribute to the establishment of autophagy, whereas autophagy contributes to ROS scavenging.</description><subject>abiotic stress</subject><subject>Abscisic Acid</subject><subject>ATG</subject><subject>Autophagy</subject><subject>biotic stress</subject><subject>enzymes</subject><subject>ethylene</subject><subject>GABA</subject><subject>gamma-aminobutyric acid</subject><subject>Gene Expression Regulation, Plant</subject><subject>Life Sciences</subject><subject>Reactive Oxygen Species</subject><subject>ROS</subject><subject>Signal Transduction</subject><subject>SnRK1</subject><subject>stress response</subject><subject>stress tolerance</subject><subject>Stress, Physiological</subject><subject>target of rapamycin proteins</subject><subject>TOR</subject><subject>vacuoles</subject><subject>Vegetal Biology</subject><issn>1360-1385</issn><issn>1878-4372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS1UREvLR6DKsT0kjP_FzgW0rYAirYREe7ccx9n1shsH27tSv30dZakKl548st9745kfQh8xVBhw_WlTpXGrhxQrAripgFQA-A06w1LIklFBTnJNaygxlfwUvY9xAwACy_odOqUgCaOcnyG5dMNvN6yKxT75ca1Xj0XyxaJ1PjlT6KErbubyPgUbY_HLxtEP0cYL9LbX22g_HM9z9PDt68PtXbn8-f3H7WJZGk5ZKlkjKCWMaFmDwYK0hLZU677TAqAzNRVNh61pew2EMiGxpBQa1uu2ZYa39Bx9nmPHfbuznbFDCnqrxuB2Ojwqr53692Vwa7XyB1UzwWuMc8D1HLD-z3a3WKrpDljNcUPZYdJeHZsF_2dvY1I7F43d5j1bv4-KEIKBsax-XZo5cJJnn1L5LDXBxxhs__wNDGpiqTbqyFJNLBUQlVlm3-XL0Z9df-FlwZdZYPP-D84GFY2zg7GdC9Yk1Xn3SosnYDaxig</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Signorelli, Santiago</creator><creator>Tarkowski, Łukasz Paweł</creator><creator>Van den Ende, Wim</creator><creator>Bassham, Diane C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20190501</creationdate><title>Linking Autophagy to Abiotic and Biotic Stress Responses</title><author>Signorelli, Santiago ; Tarkowski, Łukasz Paweł ; Van den Ende, Wim ; Bassham, Diane C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-49733242a860c172b23b3aafda700dc6379d1ecbfa0234781833094fabb4c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>abiotic stress</topic><topic>Abscisic Acid</topic><topic>ATG</topic><topic>Autophagy</topic><topic>biotic stress</topic><topic>enzymes</topic><topic>ethylene</topic><topic>GABA</topic><topic>gamma-aminobutyric acid</topic><topic>Gene Expression Regulation, Plant</topic><topic>Life Sciences</topic><topic>Reactive Oxygen Species</topic><topic>ROS</topic><topic>Signal Transduction</topic><topic>SnRK1</topic><topic>stress response</topic><topic>stress tolerance</topic><topic>Stress, Physiological</topic><topic>target of rapamycin proteins</topic><topic>TOR</topic><topic>vacuoles</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Signorelli, Santiago</creatorcontrib><creatorcontrib>Tarkowski, Łukasz Paweł</creatorcontrib><creatorcontrib>Van den Ende, Wim</creatorcontrib><creatorcontrib>Bassham, Diane C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Signorelli, Santiago</au><au>Tarkowski, Łukasz Paweł</au><au>Van den Ende, Wim</au><au>Bassham, Diane C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking Autophagy to Abiotic and Biotic Stress Responses</atitle><jtitle>Trends in plant science</jtitle><addtitle>Trends Plant Sci</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>24</volume><issue>5</issue><spage>413</spage><epage>430</epage><pages>413-430</pages><issn>1360-1385</issn><eissn>1878-4372</eissn><abstract>Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role of SNF-related kinase 1 (SnRK1) and TOR kinases in the regulation of autophagy, abscisic acid (ABA) and its signaling kinase SnRK2 have emerged as key players in the induction of autophagy under stress conditions. Furthermore, an interplay between reactive oxygen species (ROS) and autophagy is observed, ROS being able to induce autophagy and autophagy able to reduce ROS production. We also highlight the importance of osmotic adjustment for the successful performance of autophagy and discuss the potential role of GABA in plant survival and ethylene (ET)-induced autophagy. Autophagy enhances tolerance to many abiotic stresses and oxidative stress conditions. The energy sensors SNF-related kinase 1 (SnRK1) and TOR control autophagy under energy deficiency, but also under diverse stress conditions. Independently of the nutritional state of the cells, the stress-responsive SnRK2 emerges as a new player in the inhibition of TOR and induction of autophagy under stress conditions. Under biotic stress, autophagy can be advantageous to the host as well as being exploited by the pathogen, depending on the pathosystem considered. Reactive oxygen species (ROS) contribute to the establishment of autophagy, whereas autophagy contributes to ROS scavenging.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30824355</pmid><doi>10.1016/j.tplants.2019.02.001</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1360-1385
ispartof Trends in plant science, 2019-05, Vol.24 (5), p.413-430
issn 1360-1385
1878-4372
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6475611
source MEDLINE; Elsevier ScienceDirect Journals
subjects abiotic stress
Abscisic Acid
ATG
Autophagy
biotic stress
enzymes
ethylene
GABA
gamma-aminobutyric acid
Gene Expression Regulation, Plant
Life Sciences
Reactive Oxygen Species
ROS
Signal Transduction
SnRK1
stress response
stress tolerance
Stress, Physiological
target of rapamycin proteins
TOR
vacuoles
Vegetal Biology
title Linking Autophagy to Abiotic and Biotic Stress Responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20Autophagy%20to%20Abiotic%20and%20Biotic%20Stress%20Responses&rft.jtitle=Trends%20in%20plant%20science&rft.au=Signorelli,%20Santiago&rft.date=2019-05-01&rft.volume=24&rft.issue=5&rft.spage=413&rft.epage=430&rft.pages=413-430&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016/j.tplants.2019.02.001&rft_dat=%3Cproquest_pubme%3E2187527331%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187527331&rft_id=info:pmid/30824355&rft_els_id=S1360138519300287&rfr_iscdi=true