Cryogenic Differential Amplifier for NMR Applications

We have designed and characterized a cryogenic amplifier for use in 3 He NMR spectrometry. The amplifier, with a power consumption of ∼ 2.5  mW, works at temperatures down to 4 K. It has a high-impedance input for measuring a signal from NMR resonant circuit, and a 50  Ω differential input which can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low temperature physics 2019, Vol.195 (1-2), p.72-80
Hauptverfasser: Zavjalov, V. V., Savin, A. M., Hakonen, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1-2
container_start_page 72
container_title Journal of low temperature physics
container_volume 195
creator Zavjalov, V. V.
Savin, A. M.
Hakonen, P. J.
description We have designed and characterized a cryogenic amplifier for use in 3 He NMR spectrometry. The amplifier, with a power consumption of ∼ 2.5  mW, works at temperatures down to 4 K. It has a high-impedance input for measuring a signal from NMR resonant circuit, and a 50  Ω differential input which can be used for pick-up compensation and gain calibration. At 4.2 K, the amplifier has a voltage gain of 45, output resistance 146  Ω and a 4.4 MHz bandwidth starting from DC. At 1 MHz, the voltage and current noise amount to 1.3  nV / Hz and 12  fA / Hz , respectively, which yields an optimal source impedance of ∼ 100  k Ω .
doi_str_mv 10.1007/s10909-018-02130-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6474854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211605355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-424b9824c990d00a75b14e92f8c36e843d44fef4d577ac797d42bb0b957bf1f33</originalsourceid><addsrcrecordid>eNp9kUtLAzEQx4Motj6-gAdZ8OJldfJqNheh1Cf4ANFzyGaTGtluatIKfntTq_Vx8BSY-c0_M_wQ2sNwhAHEccIgQZaAqxIIplDiNdTHXNBSUC7WUR-AkJIQiXtoK6VnAJDVgG6iHsUgKGFVH_FRfAtj23lTnHrnbLTdzOu2GE6mrXfexsKFWNze3BfDaa4YPfOhSztow-k22d3Pdxs9np89jC7L67uLq9HwujScwaxkhNWyIsxICQ2AFrzGzEriKkMHtmK0YcxZxxouhDZCioaRuoZaclE77CjdRifL3Om8ntjG5OWibtU0-omObypor353Ov-kxuFVDZhgFWc54PAzIIaXuU0zNfHJ2LbVnQ3zpAihWJKKSJ7Rgz_oc5jHLp-XKYwHwClfUGRJmRhSitatlsGgFlbU0orKVtSHFYXz0P7PM1YjXxoyQJdAyq1ubOP33__EvgMSjZba</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211605355</pqid></control><display><type>article</type><title>Cryogenic Differential Amplifier for NMR Applications</title><source>SpringerLink Journals</source><creator>Zavjalov, V. V. ; Savin, A. M. ; Hakonen, P. J.</creator><creatorcontrib>Zavjalov, V. V. ; Savin, A. M. ; Hakonen, P. J.</creatorcontrib><description>We have designed and characterized a cryogenic amplifier for use in 3 He NMR spectrometry. The amplifier, with a power consumption of ∼ 2.5  mW, works at temperatures down to 4 K. It has a high-impedance input for measuring a signal from NMR resonant circuit, and a 50  Ω differential input which can be used for pick-up compensation and gain calibration. At 4.2 K, the amplifier has a voltage gain of 45, output resistance 146  Ω and a 4.4 MHz bandwidth starting from DC. At 1 MHz, the voltage and current noise amount to 1.3  nV / Hz and 12  fA / Hz , respectively, which yields an optimal source impedance of ∼ 100  k Ω .</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-018-02130-1</identifier><identifier>PMID: 31073248</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amplification ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Differential amplifiers ; Electric potential ; Gain ; Impedance ; Low temperature physics ; Magnetic Materials ; Magnetism ; NMR ; Nuclear magnetic resonance ; Physics ; Physics and Astronomy ; Power consumption ; Voltage gain</subject><ispartof>Journal of low temperature physics, 2019, Vol.195 (1-2), p.72-80</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-424b9824c990d00a75b14e92f8c36e843d44fef4d577ac797d42bb0b957bf1f33</citedby><cites>FETCH-LOGICAL-c540t-424b9824c990d00a75b14e92f8c36e843d44fef4d577ac797d42bb0b957bf1f33</cites><orcidid>0000-0001-9894-1180 ; 0000-0002-8247-4108 ; 0000-0001-9960-9323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-018-02130-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-018-02130-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31073248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zavjalov, V. V.</creatorcontrib><creatorcontrib>Savin, A. M.</creatorcontrib><creatorcontrib>Hakonen, P. J.</creatorcontrib><title>Cryogenic Differential Amplifier for NMR Applications</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><addtitle>J Low Temp Phys</addtitle><description>We have designed and characterized a cryogenic amplifier for use in 3 He NMR spectrometry. The amplifier, with a power consumption of ∼ 2.5  mW, works at temperatures down to 4 K. It has a high-impedance input for measuring a signal from NMR resonant circuit, and a 50  Ω differential input which can be used for pick-up compensation and gain calibration. At 4.2 K, the amplifier has a voltage gain of 45, output resistance 146  Ω and a 4.4 MHz bandwidth starting from DC. At 1 MHz, the voltage and current noise amount to 1.3  nV / Hz and 12  fA / Hz , respectively, which yields an optimal source impedance of ∼ 100  k Ω .</description><subject>Amplification</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Differential amplifiers</subject><subject>Electric potential</subject><subject>Gain</subject><subject>Impedance</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power consumption</subject><subject>Voltage gain</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUtLAzEQx4Motj6-gAdZ8OJldfJqNheh1Cf4ANFzyGaTGtluatIKfntTq_Vx8BSY-c0_M_wQ2sNwhAHEccIgQZaAqxIIplDiNdTHXNBSUC7WUR-AkJIQiXtoK6VnAJDVgG6iHsUgKGFVH_FRfAtj23lTnHrnbLTdzOu2GE6mrXfexsKFWNze3BfDaa4YPfOhSztow-k22d3Pdxs9np89jC7L67uLq9HwujScwaxkhNWyIsxICQ2AFrzGzEriKkMHtmK0YcxZxxouhDZCioaRuoZaclE77CjdRifL3Om8ntjG5OWibtU0-omObypor353Ov-kxuFVDZhgFWc54PAzIIaXuU0zNfHJ2LbVnQ3zpAihWJKKSJ7Rgz_oc5jHLp-XKYwHwClfUGRJmRhSitatlsGgFlbU0orKVtSHFYXz0P7PM1YjXxoyQJdAyq1ubOP33__EvgMSjZba</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zavjalov, V. V.</creator><creator>Savin, A. M.</creator><creator>Hakonen, P. J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9894-1180</orcidid><orcidid>https://orcid.org/0000-0002-8247-4108</orcidid><orcidid>https://orcid.org/0000-0001-9960-9323</orcidid></search><sort><creationdate>2019</creationdate><title>Cryogenic Differential Amplifier for NMR Applications</title><author>Zavjalov, V. V. ; Savin, A. M. ; Hakonen, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-424b9824c990d00a75b14e92f8c36e843d44fef4d577ac797d42bb0b957bf1f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplification</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Differential amplifiers</topic><topic>Electric potential</topic><topic>Gain</topic><topic>Impedance</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power consumption</topic><topic>Voltage gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zavjalov, V. V.</creatorcontrib><creatorcontrib>Savin, A. M.</creatorcontrib><creatorcontrib>Hakonen, P. J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zavjalov, V. V.</au><au>Savin, A. M.</au><au>Hakonen, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryogenic Differential Amplifier for NMR Applications</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><addtitle>J Low Temp Phys</addtitle><date>2019</date><risdate>2019</risdate><volume>195</volume><issue>1-2</issue><spage>72</spage><epage>80</epage><pages>72-80</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We have designed and characterized a cryogenic amplifier for use in 3 He NMR spectrometry. The amplifier, with a power consumption of ∼ 2.5  mW, works at temperatures down to 4 K. It has a high-impedance input for measuring a signal from NMR resonant circuit, and a 50  Ω differential input which can be used for pick-up compensation and gain calibration. At 4.2 K, the amplifier has a voltage gain of 45, output resistance 146  Ω and a 4.4 MHz bandwidth starting from DC. At 1 MHz, the voltage and current noise amount to 1.3  nV / Hz and 12  fA / Hz , respectively, which yields an optimal source impedance of ∼ 100  k Ω .</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31073248</pmid><doi>10.1007/s10909-018-02130-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9894-1180</orcidid><orcidid>https://orcid.org/0000-0002-8247-4108</orcidid><orcidid>https://orcid.org/0000-0001-9960-9323</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2019, Vol.195 (1-2), p.72-80
issn 0022-2291
1573-7357
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6474854
source SpringerLink Journals
subjects Amplification
Characterization and Evaluation of Materials
Condensed Matter Physics
Differential amplifiers
Electric potential
Gain
Impedance
Low temperature physics
Magnetic Materials
Magnetism
NMR
Nuclear magnetic resonance
Physics
Physics and Astronomy
Power consumption
Voltage gain
title Cryogenic Differential Amplifier for NMR Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryogenic%20Differential%20Amplifier%20for%20NMR%20Applications&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Zavjalov,%20V.%20V.&rft.date=2019&rft.volume=195&rft.issue=1-2&rft.spage=72&rft.epage=80&rft.pages=72-80&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-018-02130-1&rft_dat=%3Cproquest_pubme%3E2211605355%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211605355&rft_id=info:pmid/31073248&rfr_iscdi=true