Cryogenic Differential Amplifier for NMR Applications
We have designed and characterized a cryogenic amplifier for use in 3 He NMR spectrometry. The amplifier, with a power consumption of ∼ 2.5 mW, works at temperatures down to 4 K. It has a high-impedance input for measuring a signal from NMR resonant circuit, and a 50 Ω differential input which can...
Gespeichert in:
Veröffentlicht in: | Journal of low temperature physics 2019, Vol.195 (1-2), p.72-80 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | 1-2 |
container_start_page | 72 |
container_title | Journal of low temperature physics |
container_volume | 195 |
creator | Zavjalov, V. V. Savin, A. M. Hakonen, P. J. |
description | We have designed and characterized a cryogenic amplifier for use in
3
He NMR spectrometry. The amplifier, with a power consumption of
∼
2.5
mW, works at temperatures down to 4 K. It has a high-impedance input for measuring a signal from NMR resonant circuit, and a 50
Ω
differential input which can be used for pick-up compensation and gain calibration. At 4.2 K, the amplifier has a voltage gain of 45, output resistance 146
Ω
and a 4.4 MHz bandwidth starting from DC. At 1 MHz, the voltage and current noise amount to 1.3
nV
/
Hz
and 12
fA
/
Hz
, respectively, which yields an optimal source impedance of
∼
100
k
Ω
. |
doi_str_mv | 10.1007/s10909-018-02130-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6474854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211605355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-424b9824c990d00a75b14e92f8c36e843d44fef4d577ac797d42bb0b957bf1f33</originalsourceid><addsrcrecordid>eNp9kUtLAzEQx4Motj6-gAdZ8OJldfJqNheh1Cf4ANFzyGaTGtluatIKfntTq_Vx8BSY-c0_M_wQ2sNwhAHEccIgQZaAqxIIplDiNdTHXNBSUC7WUR-AkJIQiXtoK6VnAJDVgG6iHsUgKGFVH_FRfAtj23lTnHrnbLTdzOu2GE6mrXfexsKFWNze3BfDaa4YPfOhSztow-k22d3Pdxs9np89jC7L67uLq9HwujScwaxkhNWyIsxICQ2AFrzGzEriKkMHtmK0YcxZxxouhDZCioaRuoZaclE77CjdRifL3Om8ntjG5OWibtU0-omObypor353Ov-kxuFVDZhgFWc54PAzIIaXuU0zNfHJ2LbVnQ3zpAihWJKKSJ7Rgz_oc5jHLp-XKYwHwClfUGRJmRhSitatlsGgFlbU0orKVtSHFYXz0P7PM1YjXxoyQJdAyq1ubOP33__EvgMSjZba</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211605355</pqid></control><display><type>article</type><title>Cryogenic Differential Amplifier for NMR Applications</title><source>SpringerLink Journals</source><creator>Zavjalov, V. V. ; Savin, A. M. ; Hakonen, P. J.</creator><creatorcontrib>Zavjalov, V. V. ; Savin, A. M. ; Hakonen, P. J.</creatorcontrib><description>We have designed and characterized a cryogenic amplifier for use in
3
He NMR spectrometry. The amplifier, with a power consumption of
∼
2.5
mW, works at temperatures down to 4 K. It has a high-impedance input for measuring a signal from NMR resonant circuit, and a 50
Ω
differential input which can be used for pick-up compensation and gain calibration. At 4.2 K, the amplifier has a voltage gain of 45, output resistance 146
Ω
and a 4.4 MHz bandwidth starting from DC. At 1 MHz, the voltage and current noise amount to 1.3
nV
/
Hz
and 12
fA
/
Hz
, respectively, which yields an optimal source impedance of
∼
100
k
Ω
.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-018-02130-1</identifier><identifier>PMID: 31073248</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amplification ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Differential amplifiers ; Electric potential ; Gain ; Impedance ; Low temperature physics ; Magnetic Materials ; Magnetism ; NMR ; Nuclear magnetic resonance ; Physics ; Physics and Astronomy ; Power consumption ; Voltage gain</subject><ispartof>Journal of low temperature physics, 2019, Vol.195 (1-2), p.72-80</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-424b9824c990d00a75b14e92f8c36e843d44fef4d577ac797d42bb0b957bf1f33</citedby><cites>FETCH-LOGICAL-c540t-424b9824c990d00a75b14e92f8c36e843d44fef4d577ac797d42bb0b957bf1f33</cites><orcidid>0000-0001-9894-1180 ; 0000-0002-8247-4108 ; 0000-0001-9960-9323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-018-02130-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-018-02130-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31073248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zavjalov, V. V.</creatorcontrib><creatorcontrib>Savin, A. M.</creatorcontrib><creatorcontrib>Hakonen, P. J.</creatorcontrib><title>Cryogenic Differential Amplifier for NMR Applications</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><addtitle>J Low Temp Phys</addtitle><description>We have designed and characterized a cryogenic amplifier for use in
3
He NMR spectrometry. The amplifier, with a power consumption of
∼
2.5
mW, works at temperatures down to 4 K. It has a high-impedance input for measuring a signal from NMR resonant circuit, and a 50
Ω
differential input which can be used for pick-up compensation and gain calibration. At 4.2 K, the amplifier has a voltage gain of 45, output resistance 146
Ω
and a 4.4 MHz bandwidth starting from DC. At 1 MHz, the voltage and current noise amount to 1.3
nV
/
Hz
and 12
fA
/
Hz
, respectively, which yields an optimal source impedance of
∼
100
k
Ω
.</description><subject>Amplification</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Differential amplifiers</subject><subject>Electric potential</subject><subject>Gain</subject><subject>Impedance</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power consumption</subject><subject>Voltage gain</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUtLAzEQx4Motj6-gAdZ8OJldfJqNheh1Cf4ANFzyGaTGtluatIKfntTq_Vx8BSY-c0_M_wQ2sNwhAHEccIgQZaAqxIIplDiNdTHXNBSUC7WUR-AkJIQiXtoK6VnAJDVgG6iHsUgKGFVH_FRfAtj23lTnHrnbLTdzOu2GE6mrXfexsKFWNze3BfDaa4YPfOhSztow-k22d3Pdxs9np89jC7L67uLq9HwujScwaxkhNWyIsxICQ2AFrzGzEriKkMHtmK0YcxZxxouhDZCioaRuoZaclE77CjdRifL3Om8ntjG5OWibtU0-omObypor353Ov-kxuFVDZhgFWc54PAzIIaXuU0zNfHJ2LbVnQ3zpAihWJKKSJ7Rgz_oc5jHLp-XKYwHwClfUGRJmRhSitatlsGgFlbU0orKVtSHFYXz0P7PM1YjXxoyQJdAyq1ubOP33__EvgMSjZba</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zavjalov, V. V.</creator><creator>Savin, A. M.</creator><creator>Hakonen, P. J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9894-1180</orcidid><orcidid>https://orcid.org/0000-0002-8247-4108</orcidid><orcidid>https://orcid.org/0000-0001-9960-9323</orcidid></search><sort><creationdate>2019</creationdate><title>Cryogenic Differential Amplifier for NMR Applications</title><author>Zavjalov, V. V. ; Savin, A. M. ; Hakonen, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-424b9824c990d00a75b14e92f8c36e843d44fef4d577ac797d42bb0b957bf1f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplification</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Differential amplifiers</topic><topic>Electric potential</topic><topic>Gain</topic><topic>Impedance</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power consumption</topic><topic>Voltage gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zavjalov, V. V.</creatorcontrib><creatorcontrib>Savin, A. M.</creatorcontrib><creatorcontrib>Hakonen, P. J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zavjalov, V. V.</au><au>Savin, A. M.</au><au>Hakonen, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryogenic Differential Amplifier for NMR Applications</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><addtitle>J Low Temp Phys</addtitle><date>2019</date><risdate>2019</risdate><volume>195</volume><issue>1-2</issue><spage>72</spage><epage>80</epage><pages>72-80</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We have designed and characterized a cryogenic amplifier for use in
3
He NMR spectrometry. The amplifier, with a power consumption of
∼
2.5
mW, works at temperatures down to 4 K. It has a high-impedance input for measuring a signal from NMR resonant circuit, and a 50
Ω
differential input which can be used for pick-up compensation and gain calibration. At 4.2 K, the amplifier has a voltage gain of 45, output resistance 146
Ω
and a 4.4 MHz bandwidth starting from DC. At 1 MHz, the voltage and current noise amount to 1.3
nV
/
Hz
and 12
fA
/
Hz
, respectively, which yields an optimal source impedance of
∼
100
k
Ω
.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31073248</pmid><doi>10.1007/s10909-018-02130-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9894-1180</orcidid><orcidid>https://orcid.org/0000-0002-8247-4108</orcidid><orcidid>https://orcid.org/0000-0001-9960-9323</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2291 |
ispartof | Journal of low temperature physics, 2019, Vol.195 (1-2), p.72-80 |
issn | 0022-2291 1573-7357 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6474854 |
source | SpringerLink Journals |
subjects | Amplification Characterization and Evaluation of Materials Condensed Matter Physics Differential amplifiers Electric potential Gain Impedance Low temperature physics Magnetic Materials Magnetism NMR Nuclear magnetic resonance Physics Physics and Astronomy Power consumption Voltage gain |
title | Cryogenic Differential Amplifier for NMR Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryogenic%20Differential%20Amplifier%20for%20NMR%20Applications&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Zavjalov,%20V.%20V.&rft.date=2019&rft.volume=195&rft.issue=1-2&rft.spage=72&rft.epage=80&rft.pages=72-80&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-018-02130-1&rft_dat=%3Cproquest_pubme%3E2211605355%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211605355&rft_id=info:pmid/31073248&rfr_iscdi=true |