Coordination between Surface Lattice Resonances of Poly(glycidyl Methacrylate) Line Array and Surface Plasmon Resonances of CdS Quantum on Silicon Surface

In this work, a unique hybrid system is proposed for one-dimensional gratings comprising of poly(glycidyl methacrylate) (PGMA) brushes and CdS quantum dots (CQDs). Generally, the emission of QDs is too weak to be observed in a dry state. Plasmonic resonances of the grating structures can be used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2019-03, Vol.11 (3), p.558
Hauptverfasser: Su, Shuenn-Kung, Lin, Feng-Ping, Huang, Chih-Feng, Lu, Chien-Hsing, Chen, Jem-Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 558
container_title Polymers
container_volume 11
creator Su, Shuenn-Kung
Lin, Feng-Ping
Huang, Chih-Feng
Lu, Chien-Hsing
Chen, Jem-Kun
description In this work, a unique hybrid system is proposed for one-dimensional gratings comprising of poly(glycidyl methacrylate) (PGMA) brushes and CdS quantum dots (CQDs). Generally, the emission of QDs is too weak to be observed in a dry state. Plasmonic resonances of the grating structures can be used to enhance the light emission or absorption of CQDs. The interaction between PGMA plasmonic nanostructures and inorganic CQDs plays a crucial role in engineering the light harvest, notably for optoelectronic applications. Extinction measurements of the hybrid system consisting of a PGMA grating and CQDs are reported. We designed one-dimensional gratings with various resolutions to tune the absorptance peaks of grating. PGMA grating grafted from a 1.5 µm resolution of trench arrays of photoresist exhibited absorptance peak at 395 nm, close to the absorption peak of CQDs, resulting in the photoluminescence enhancement of CQDs on the grating due to high charge carriers' recombination rate. Generally, the emission of quantum dots occurs under irradiation at characteristic wavelengths. Immobilizing QDs on the grating facilitates the emission of QDs under irradiation of full-wavelength light. Furthermore, the PGMA gratings with CQDs were immersed in various solvents to change the geometries resulting the shift of absorptance peak of grating. The proposed method could be applied for sensing the nature of the surrounding media and vice versa, as well as for various media of solvents.
doi_str_mv 10.3390/polym11030558
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6473753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557230540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-3f24d2cf334cf07a408004cf2daa6569e6a307c695d9b92be8f27e0da91dce9a3</originalsourceid><addsrcrecordid>eNpdkV9rFDEUxQdRbGn76KsEfKkPYzP5NzsvQlnaKqxYXX0OdzN32pRMsiYZy3yVflojrUvXvNyQ--OcHE5VvWnoB847erYNbh6bhnIq5eJFdchoy2vBFX357H5QnaR0R8sRUqmmfV0dcNopKgU7rB6WIcTeesg2eLLBfI_oyXqKAxgkK8jZlvkdU_DgDSYSBnJdXE9v3GxsPzvyBfMtmDg7yPierKxHch4jzAR8vxO6dpDGYrAvtOzX5NsEPk8jKcu1ddaEnftx9WoAl_DkaR5VPy8vfiw_1auvV5-X56vaiEbmmg9M9MwMnAsz0BYEXZSkZmA9gJKqQwWctkZ1su82HdvgYmAt0h66pjfYAT-qPj7qbqfNiOXN5whOb6MdIc46gNX7G29v9U34rZVoeSt5ETh9Eojh14Qp69Emg86BxzAlzRhVjImOLQr67j_0LkzRl3iaSdmyUqSghaofKRNDShGH3Wcaqv8Wr_eKL_zb5wl29L-a-R8sq6zf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557230540</pqid></control><display><type>article</type><title>Coordination between Surface Lattice Resonances of Poly(glycidyl Methacrylate) Line Array and Surface Plasmon Resonances of CdS Quantum on Silicon Surface</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Su, Shuenn-Kung ; Lin, Feng-Ping ; Huang, Chih-Feng ; Lu, Chien-Hsing ; Chen, Jem-Kun</creator><creatorcontrib>Su, Shuenn-Kung ; Lin, Feng-Ping ; Huang, Chih-Feng ; Lu, Chien-Hsing ; Chen, Jem-Kun</creatorcontrib><description>In this work, a unique hybrid system is proposed for one-dimensional gratings comprising of poly(glycidyl methacrylate) (PGMA) brushes and CdS quantum dots (CQDs). Generally, the emission of QDs is too weak to be observed in a dry state. Plasmonic resonances of the grating structures can be used to enhance the light emission or absorption of CQDs. The interaction between PGMA plasmonic nanostructures and inorganic CQDs plays a crucial role in engineering the light harvest, notably for optoelectronic applications. Extinction measurements of the hybrid system consisting of a PGMA grating and CQDs are reported. We designed one-dimensional gratings with various resolutions to tune the absorptance peaks of grating. PGMA grating grafted from a 1.5 µm resolution of trench arrays of photoresist exhibited absorptance peak at 395 nm, close to the absorption peak of CQDs, resulting in the photoluminescence enhancement of CQDs on the grating due to high charge carriers' recombination rate. Generally, the emission of quantum dots occurs under irradiation at characteristic wavelengths. Immobilizing QDs on the grating facilitates the emission of QDs under irradiation of full-wavelength light. Furthermore, the PGMA gratings with CQDs were immersed in various solvents to change the geometries resulting the shift of absorptance peak of grating. The proposed method could be applied for sensing the nature of the surrounding media and vice versa, as well as for various media of solvents.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym11030558</identifier><identifier>PMID: 30960542</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Absorptance ; Absorption ; Absorptivity ; Arrays ; Cadmium sulfide ; Current carriers ; Hybrid systems ; Investigations ; Irradiation ; Light emission ; Optical properties ; Optoelectronics ; Photoluminescence ; Photoresists ; Plasma etching ; Plasmonics ; Polymerization ; Polymers ; Quantum dots ; Silicon wafers ; Solvents ; Surface chemistry ; Surface plasmon resonance ; Vacuum distillation</subject><ispartof>Polymers, 2019-03, Vol.11 (3), p.558</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-3f24d2cf334cf07a408004cf2daa6569e6a307c695d9b92be8f27e0da91dce9a3</citedby><cites>FETCH-LOGICAL-c415t-3f24d2cf334cf07a408004cf2daa6569e6a307c695d9b92be8f27e0da91dce9a3</cites><orcidid>0000-0002-8062-8708 ; 0000-0003-3670-6710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473753/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473753/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30960542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Shuenn-Kung</creatorcontrib><creatorcontrib>Lin, Feng-Ping</creatorcontrib><creatorcontrib>Huang, Chih-Feng</creatorcontrib><creatorcontrib>Lu, Chien-Hsing</creatorcontrib><creatorcontrib>Chen, Jem-Kun</creatorcontrib><title>Coordination between Surface Lattice Resonances of Poly(glycidyl Methacrylate) Line Array and Surface Plasmon Resonances of CdS Quantum on Silicon Surface</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>In this work, a unique hybrid system is proposed for one-dimensional gratings comprising of poly(glycidyl methacrylate) (PGMA) brushes and CdS quantum dots (CQDs). Generally, the emission of QDs is too weak to be observed in a dry state. Plasmonic resonances of the grating structures can be used to enhance the light emission or absorption of CQDs. The interaction between PGMA plasmonic nanostructures and inorganic CQDs plays a crucial role in engineering the light harvest, notably for optoelectronic applications. Extinction measurements of the hybrid system consisting of a PGMA grating and CQDs are reported. We designed one-dimensional gratings with various resolutions to tune the absorptance peaks of grating. PGMA grating grafted from a 1.5 µm resolution of trench arrays of photoresist exhibited absorptance peak at 395 nm, close to the absorption peak of CQDs, resulting in the photoluminescence enhancement of CQDs on the grating due to high charge carriers' recombination rate. Generally, the emission of quantum dots occurs under irradiation at characteristic wavelengths. Immobilizing QDs on the grating facilitates the emission of QDs under irradiation of full-wavelength light. Furthermore, the PGMA gratings with CQDs were immersed in various solvents to change the geometries resulting the shift of absorptance peak of grating. The proposed method could be applied for sensing the nature of the surrounding media and vice versa, as well as for various media of solvents.</description><subject>Absorptance</subject><subject>Absorption</subject><subject>Absorptivity</subject><subject>Arrays</subject><subject>Cadmium sulfide</subject><subject>Current carriers</subject><subject>Hybrid systems</subject><subject>Investigations</subject><subject>Irradiation</subject><subject>Light emission</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Photoluminescence</subject><subject>Photoresists</subject><subject>Plasma etching</subject><subject>Plasmonics</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Quantum dots</subject><subject>Silicon wafers</subject><subject>Solvents</subject><subject>Surface chemistry</subject><subject>Surface plasmon resonance</subject><subject>Vacuum distillation</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV9rFDEUxQdRbGn76KsEfKkPYzP5NzsvQlnaKqxYXX0OdzN32pRMsiYZy3yVflojrUvXvNyQ--OcHE5VvWnoB847erYNbh6bhnIq5eJFdchoy2vBFX357H5QnaR0R8sRUqmmfV0dcNopKgU7rB6WIcTeesg2eLLBfI_oyXqKAxgkK8jZlvkdU_DgDSYSBnJdXE9v3GxsPzvyBfMtmDg7yPierKxHch4jzAR8vxO6dpDGYrAvtOzX5NsEPk8jKcu1ddaEnftx9WoAl_DkaR5VPy8vfiw_1auvV5-X56vaiEbmmg9M9MwMnAsz0BYEXZSkZmA9gJKqQwWctkZ1su82HdvgYmAt0h66pjfYAT-qPj7qbqfNiOXN5whOb6MdIc46gNX7G29v9U34rZVoeSt5ETh9Eojh14Qp69Emg86BxzAlzRhVjImOLQr67j_0LkzRl3iaSdmyUqSghaofKRNDShGH3Wcaqv8Wr_eKL_zb5wl29L-a-R8sq6zf</recordid><startdate>20190325</startdate><enddate>20190325</enddate><creator>Su, Shuenn-Kung</creator><creator>Lin, Feng-Ping</creator><creator>Huang, Chih-Feng</creator><creator>Lu, Chien-Hsing</creator><creator>Chen, Jem-Kun</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8062-8708</orcidid><orcidid>https://orcid.org/0000-0003-3670-6710</orcidid></search><sort><creationdate>20190325</creationdate><title>Coordination between Surface Lattice Resonances of Poly(glycidyl Methacrylate) Line Array and Surface Plasmon Resonances of CdS Quantum on Silicon Surface</title><author>Su, Shuenn-Kung ; Lin, Feng-Ping ; Huang, Chih-Feng ; Lu, Chien-Hsing ; Chen, Jem-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-3f24d2cf334cf07a408004cf2daa6569e6a307c695d9b92be8f27e0da91dce9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorptance</topic><topic>Absorption</topic><topic>Absorptivity</topic><topic>Arrays</topic><topic>Cadmium sulfide</topic><topic>Current carriers</topic><topic>Hybrid systems</topic><topic>Investigations</topic><topic>Irradiation</topic><topic>Light emission</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Photoluminescence</topic><topic>Photoresists</topic><topic>Plasma etching</topic><topic>Plasmonics</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Quantum dots</topic><topic>Silicon wafers</topic><topic>Solvents</topic><topic>Surface chemistry</topic><topic>Surface plasmon resonance</topic><topic>Vacuum distillation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Shuenn-Kung</creatorcontrib><creatorcontrib>Lin, Feng-Ping</creatorcontrib><creatorcontrib>Huang, Chih-Feng</creatorcontrib><creatorcontrib>Lu, Chien-Hsing</creatorcontrib><creatorcontrib>Chen, Jem-Kun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Shuenn-Kung</au><au>Lin, Feng-Ping</au><au>Huang, Chih-Feng</au><au>Lu, Chien-Hsing</au><au>Chen, Jem-Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordination between Surface Lattice Resonances of Poly(glycidyl Methacrylate) Line Array and Surface Plasmon Resonances of CdS Quantum on Silicon Surface</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2019-03-25</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>558</spage><pages>558-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>In this work, a unique hybrid system is proposed for one-dimensional gratings comprising of poly(glycidyl methacrylate) (PGMA) brushes and CdS quantum dots (CQDs). Generally, the emission of QDs is too weak to be observed in a dry state. Plasmonic resonances of the grating structures can be used to enhance the light emission or absorption of CQDs. The interaction between PGMA plasmonic nanostructures and inorganic CQDs plays a crucial role in engineering the light harvest, notably for optoelectronic applications. Extinction measurements of the hybrid system consisting of a PGMA grating and CQDs are reported. We designed one-dimensional gratings with various resolutions to tune the absorptance peaks of grating. PGMA grating grafted from a 1.5 µm resolution of trench arrays of photoresist exhibited absorptance peak at 395 nm, close to the absorption peak of CQDs, resulting in the photoluminescence enhancement of CQDs on the grating due to high charge carriers' recombination rate. Generally, the emission of quantum dots occurs under irradiation at characteristic wavelengths. Immobilizing QDs on the grating facilitates the emission of QDs under irradiation of full-wavelength light. Furthermore, the PGMA gratings with CQDs were immersed in various solvents to change the geometries resulting the shift of absorptance peak of grating. The proposed method could be applied for sensing the nature of the surrounding media and vice versa, as well as for various media of solvents.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30960542</pmid><doi>10.3390/polym11030558</doi><orcidid>https://orcid.org/0000-0002-8062-8708</orcidid><orcidid>https://orcid.org/0000-0003-3670-6710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2019-03, Vol.11 (3), p.558
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6473753
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Absorptance
Absorption
Absorptivity
Arrays
Cadmium sulfide
Current carriers
Hybrid systems
Investigations
Irradiation
Light emission
Optical properties
Optoelectronics
Photoluminescence
Photoresists
Plasma etching
Plasmonics
Polymerization
Polymers
Quantum dots
Silicon wafers
Solvents
Surface chemistry
Surface plasmon resonance
Vacuum distillation
title Coordination between Surface Lattice Resonances of Poly(glycidyl Methacrylate) Line Array and Surface Plasmon Resonances of CdS Quantum on Silicon Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordination%20between%20Surface%20Lattice%20Resonances%20of%20Poly(glycidyl%20Methacrylate)%20Line%20Array%20and%20Surface%20Plasmon%20Resonances%20of%20CdS%20Quantum%20on%20Silicon%20Surface&rft.jtitle=Polymers&rft.au=Su,%20Shuenn-Kung&rft.date=2019-03-25&rft.volume=11&rft.issue=3&rft.spage=558&rft.pages=558-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym11030558&rft_dat=%3Cproquest_pubme%3E2557230540%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557230540&rft_id=info:pmid/30960542&rfr_iscdi=true