Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion‑induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway

Ginsenoside Rb1 (GRb1), one of the major active saponins isolated from ginseng, has recently been reported to protect various organs against ischemia/reperfusion (IR) injury; however, the mechanisms underlying these protective effects following intestinal IR (IIR) remain unclear. The present study a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular medicine reports 2019-05, Vol.19 (5), p.3633-3641
Hauptverfasser: Chen, Sufang, Li, Xiang, Wang, Yanling, Mu, Panwei, Chen, Chaojin, Huang, Pinjie, Liu, Dezhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3641
container_issue 5
container_start_page 3633
container_title Molecular medicine reports
container_volume 19
creator Chen, Sufang
Li, Xiang
Wang, Yanling
Mu, Panwei
Chen, Chaojin
Huang, Pinjie
Liu, Dezhao
description Ginsenoside Rb1 (GRb1), one of the major active saponins isolated from ginseng, has recently been reported to protect various organs against ischemia/reperfusion (IR) injury; however, the mechanisms underlying these protective effects following intestinal IR (IIR) remain unclear. The present study aimed to evaluate the effects of GRb1 on IIR injury and determine the mechanisms involved in these effects. Sprague Dawley rats were subjected to 75 min of superior mesenteric artery occlusion, followed by 3 h of reperfusion. GRb1 (15 mg/kg) was administered intraperitoneally 1 h prior to the induction of IIR, with or without intravenous administration of Wortmannin [WM; a phosphoinositide 3‑kinase (PI3K) inhibitor, 0.6 mg/kg]. The degree of intestinal injury and oxidative stress‑induced damage was determined by histopathologic evaluation and measurement of the serum activity levels of D‑lactate, diamine oxidase and endotoxin, and the levels of malondialdehyde (MDA), superoxide dismutase (SOD) and 8‑iso‑prostaglandin F2α (8‑iso‑PGF2α). The protein expression levels of p85, phosphorylated (p)‑p85, protein kinase B (Akt), p‑Akt and nuclear factor erythroid 2‑related factor 2 (Nrf2) were determined via western blotting, and the concentrations of tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑1β and IL‑6 were measured via ELISA. It was revealed that IIR led to severe intestinal injury (as determined by significant increases in intestinal Chiu scores), which was accompanied with disruptions in the integrity of the intestinal mucosal barrier. IIR also increased the expression levels of TNF‑α, IL‑1β, IL‑6, MDA and 8‑iso‑PGF2α in the intestine, and decreased those of SOD. GRb1 reduced intestinal histological injury, and suppressed inflammatory responses and oxidative stress. Additionally, the protective effects of GRb1 were eliminated by WM. These findings indicated that GRb1 may ameliorate IIR injury by activating the PI3K/protein kinase B/Nrf2 pathway.
doi_str_mv 10.3892/mmr.2019.10018
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6471656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A585448514</galeid><sourcerecordid>A585448514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-74da30805c955fb7724d564bf2ee81557a59ee305e9118d4773337ea1cee97fe3</originalsourceid><addsrcrecordid>eNptkstuEzEUhkcIRC-wZYkssWGTxNd4vEGKqlIqKkAI1pYzcyZxmbGD7Ql011dgz9PxJJzQUC6qLPly_J1jnd9_VT1hdCpqw2fDkKacMjNllLL6XnXItGETQam8v99zY_RBdZTzJaVzxZV5WB0IWs-l5uqw-n7mQ4YQs2-BvF8y4kqBMLoCmfiAc_HB9cTnZg2Dd7MEG0jdmH0MP66_-dCODbRIdr0bBlcwTFxoSfzqWzxtgeSSIGey9Y64BiM3TOxIWQN5dy5ezxafyuxN6jjJfoVv-bAiG1fWX9zVo-pB5_oMj_frcfXx5emHk1eTi7dn5yeLi0kja1UmWrYOO6KqMUp1S625bNVcLjsOUDOltFMGQFAFhrG6lVoLITQ41gAY3YE4rl7c1N2MywHaBkJJrreb5AeXrmx03v57E_zaruLWoohsruZY4Pm-QIqfRxTNDqgY9L0LEMdsOTOMMs5kjeiz_9DLOCbsGynOGK85rfUfauV6sChvxHebXVG7ULWS2DeTSE3voHC0-FdNDNB5jN-V0KSYc4LutkdG7c5PFv1kd36yv_yECU__VuYW_20g8RO0m8mW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211282087</pqid></control><display><type>article</type><title>Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion‑induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway</title><source>Spandidos Publications Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Sufang ; Li, Xiang ; Wang, Yanling ; Mu, Panwei ; Chen, Chaojin ; Huang, Pinjie ; Liu, Dezhao</creator><creatorcontrib>Chen, Sufang ; Li, Xiang ; Wang, Yanling ; Mu, Panwei ; Chen, Chaojin ; Huang, Pinjie ; Liu, Dezhao</creatorcontrib><description>Ginsenoside Rb1 (GRb1), one of the major active saponins isolated from ginseng, has recently been reported to protect various organs against ischemia/reperfusion (IR) injury; however, the mechanisms underlying these protective effects following intestinal IR (IIR) remain unclear. The present study aimed to evaluate the effects of GRb1 on IIR injury and determine the mechanisms involved in these effects. Sprague Dawley rats were subjected to 75 min of superior mesenteric artery occlusion, followed by 3 h of reperfusion. GRb1 (15 mg/kg) was administered intraperitoneally 1 h prior to the induction of IIR, with or without intravenous administration of Wortmannin [WM; a phosphoinositide 3‑kinase (PI3K) inhibitor, 0.6 mg/kg]. The degree of intestinal injury and oxidative stress‑induced damage was determined by histopathologic evaluation and measurement of the serum activity levels of D‑lactate, diamine oxidase and endotoxin, and the levels of malondialdehyde (MDA), superoxide dismutase (SOD) and 8‑iso‑prostaglandin F2α (8‑iso‑PGF2α). The protein expression levels of p85, phosphorylated (p)‑p85, protein kinase B (Akt), p‑Akt and nuclear factor erythroid 2‑related factor 2 (Nrf2) were determined via western blotting, and the concentrations of tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑1β and IL‑6 were measured via ELISA. It was revealed that IIR led to severe intestinal injury (as determined by significant increases in intestinal Chiu scores), which was accompanied with disruptions in the integrity of the intestinal mucosal barrier. IIR also increased the expression levels of TNF‑α, IL‑1β, IL‑6, MDA and 8‑iso‑PGF2α in the intestine, and decreased those of SOD. GRb1 reduced intestinal histological injury, and suppressed inflammatory responses and oxidative stress. Additionally, the protective effects of GRb1 were eliminated by WM. These findings indicated that GRb1 may ameliorate IIR injury by activating the PI3K/protein kinase B/Nrf2 pathway.</description><identifier>ISSN: 1791-2997</identifier><identifier>EISSN: 1791-3004</identifier><identifier>DOI: 10.3892/mmr.2019.10018</identifier><identifier>PMID: 30864725</identifier><language>eng</language><publisher>Greece: Spandidos Publications</publisher><subject>1-Phosphatidylinositol 3-kinase ; Abdomen ; AKT protein ; Antioxidants ; Apoptosis ; Care and treatment ; Cellular signal transduction ; Enzyme-linked immunosorbent assay ; Experiments ; Ginseng ; Ginsenosides ; IL-1β ; Inflammation ; Injuries ; Interleukin 6 ; Interleukins ; Intestine ; Intestines ; Intravenous administration ; Ischemia ; Kinases ; Lactates ; Lactic acid ; Malondialdehyde ; Medical prognosis ; Mucosa ; Necrosis ; Occlusion ; Oxidases ; Oxidative stress ; Phosphorylation ; Physiology ; Prostaglandins ; Protein kinases ; Proteins ; Reperfusion ; Reperfusion injury ; Rodents ; Saponins ; Signal transduction ; Studies ; Superoxide dismutase ; Superoxides ; Tumor necrosis factor-α ; Tumors ; Western blotting ; Wortmannin</subject><ispartof>Molecular medicine reports, 2019-05, Vol.19 (5), p.3633-3641</ispartof><rights>COPYRIGHT 2019 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2019</rights><rights>Copyright: © Chen et al. 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-74da30805c955fb7724d564bf2ee81557a59ee305e9118d4773337ea1cee97fe3</citedby><cites>FETCH-LOGICAL-c485t-74da30805c955fb7724d564bf2ee81557a59ee305e9118d4773337ea1cee97fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30864725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Sufang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Wang, Yanling</creatorcontrib><creatorcontrib>Mu, Panwei</creatorcontrib><creatorcontrib>Chen, Chaojin</creatorcontrib><creatorcontrib>Huang, Pinjie</creatorcontrib><creatorcontrib>Liu, Dezhao</creatorcontrib><title>Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion‑induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway</title><title>Molecular medicine reports</title><addtitle>Mol Med Rep</addtitle><description>Ginsenoside Rb1 (GRb1), one of the major active saponins isolated from ginseng, has recently been reported to protect various organs against ischemia/reperfusion (IR) injury; however, the mechanisms underlying these protective effects following intestinal IR (IIR) remain unclear. The present study aimed to evaluate the effects of GRb1 on IIR injury and determine the mechanisms involved in these effects. Sprague Dawley rats were subjected to 75 min of superior mesenteric artery occlusion, followed by 3 h of reperfusion. GRb1 (15 mg/kg) was administered intraperitoneally 1 h prior to the induction of IIR, with or without intravenous administration of Wortmannin [WM; a phosphoinositide 3‑kinase (PI3K) inhibitor, 0.6 mg/kg]. The degree of intestinal injury and oxidative stress‑induced damage was determined by histopathologic evaluation and measurement of the serum activity levels of D‑lactate, diamine oxidase and endotoxin, and the levels of malondialdehyde (MDA), superoxide dismutase (SOD) and 8‑iso‑prostaglandin F2α (8‑iso‑PGF2α). The protein expression levels of p85, phosphorylated (p)‑p85, protein kinase B (Akt), p‑Akt and nuclear factor erythroid 2‑related factor 2 (Nrf2) were determined via western blotting, and the concentrations of tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑1β and IL‑6 were measured via ELISA. It was revealed that IIR led to severe intestinal injury (as determined by significant increases in intestinal Chiu scores), which was accompanied with disruptions in the integrity of the intestinal mucosal barrier. IIR also increased the expression levels of TNF‑α, IL‑1β, IL‑6, MDA and 8‑iso‑PGF2α in the intestine, and decreased those of SOD. GRb1 reduced intestinal histological injury, and suppressed inflammatory responses and oxidative stress. Additionally, the protective effects of GRb1 were eliminated by WM. These findings indicated that GRb1 may ameliorate IIR injury by activating the PI3K/protein kinase B/Nrf2 pathway.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>Abdomen</subject><subject>AKT protein</subject><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Care and treatment</subject><subject>Cellular signal transduction</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Experiments</subject><subject>Ginseng</subject><subject>Ginsenosides</subject><subject>IL-1β</subject><subject>Inflammation</subject><subject>Injuries</subject><subject>Interleukin 6</subject><subject>Interleukins</subject><subject>Intestine</subject><subject>Intestines</subject><subject>Intravenous administration</subject><subject>Ischemia</subject><subject>Kinases</subject><subject>Lactates</subject><subject>Lactic acid</subject><subject>Malondialdehyde</subject><subject>Medical prognosis</subject><subject>Mucosa</subject><subject>Necrosis</subject><subject>Occlusion</subject><subject>Oxidases</subject><subject>Oxidative stress</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Prostaglandins</subject><subject>Protein kinases</subject><subject>Proteins</subject><subject>Reperfusion</subject><subject>Reperfusion injury</subject><subject>Rodents</subject><subject>Saponins</subject><subject>Signal transduction</subject><subject>Studies</subject><subject>Superoxide dismutase</subject><subject>Superoxides</subject><subject>Tumor necrosis factor-α</subject><subject>Tumors</subject><subject>Western blotting</subject><subject>Wortmannin</subject><issn>1791-2997</issn><issn>1791-3004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkstuEzEUhkcIRC-wZYkssWGTxNd4vEGKqlIqKkAI1pYzcyZxmbGD7Ql011dgz9PxJJzQUC6qLPly_J1jnd9_VT1hdCpqw2fDkKacMjNllLL6XnXItGETQam8v99zY_RBdZTzJaVzxZV5WB0IWs-l5uqw-n7mQ4YQs2-BvF8y4kqBMLoCmfiAc_HB9cTnZg2Dd7MEG0jdmH0MP66_-dCODbRIdr0bBlcwTFxoSfzqWzxtgeSSIGey9Y64BiM3TOxIWQN5dy5ezxafyuxN6jjJfoVv-bAiG1fWX9zVo-pB5_oMj_frcfXx5emHk1eTi7dn5yeLi0kja1UmWrYOO6KqMUp1S625bNVcLjsOUDOltFMGQFAFhrG6lVoLITQ41gAY3YE4rl7c1N2MywHaBkJJrreb5AeXrmx03v57E_zaruLWoohsruZY4Pm-QIqfRxTNDqgY9L0LEMdsOTOMMs5kjeiz_9DLOCbsGynOGK85rfUfauV6sChvxHebXVG7ULWS2DeTSE3voHC0-FdNDNB5jN-V0KSYc4LutkdG7c5PFv1kd36yv_yECU__VuYW_20g8RO0m8mW</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Chen, Sufang</creator><creator>Li, Xiang</creator><creator>Wang, Yanling</creator><creator>Mu, Panwei</creator><creator>Chen, Chaojin</creator><creator>Huang, Pinjie</creator><creator>Liu, Dezhao</creator><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><general>D.A. Spandidos</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190501</creationdate><title>Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion‑induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway</title><author>Chen, Sufang ; Li, Xiang ; Wang, Yanling ; Mu, Panwei ; Chen, Chaojin ; Huang, Pinjie ; Liu, Dezhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-74da30805c955fb7724d564bf2ee81557a59ee305e9118d4773337ea1cee97fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>Abdomen</topic><topic>AKT protein</topic><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Care and treatment</topic><topic>Cellular signal transduction</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Experiments</topic><topic>Ginseng</topic><topic>Ginsenosides</topic><topic>IL-1β</topic><topic>Inflammation</topic><topic>Injuries</topic><topic>Interleukin 6</topic><topic>Interleukins</topic><topic>Intestine</topic><topic>Intestines</topic><topic>Intravenous administration</topic><topic>Ischemia</topic><topic>Kinases</topic><topic>Lactates</topic><topic>Lactic acid</topic><topic>Malondialdehyde</topic><topic>Medical prognosis</topic><topic>Mucosa</topic><topic>Necrosis</topic><topic>Occlusion</topic><topic>Oxidases</topic><topic>Oxidative stress</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Prostaglandins</topic><topic>Protein kinases</topic><topic>Proteins</topic><topic>Reperfusion</topic><topic>Reperfusion injury</topic><topic>Rodents</topic><topic>Saponins</topic><topic>Signal transduction</topic><topic>Studies</topic><topic>Superoxide dismutase</topic><topic>Superoxides</topic><topic>Tumor necrosis factor-α</topic><topic>Tumors</topic><topic>Western blotting</topic><topic>Wortmannin</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Sufang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Wang, Yanling</creatorcontrib><creatorcontrib>Mu, Panwei</creatorcontrib><creatorcontrib>Chen, Chaojin</creatorcontrib><creatorcontrib>Huang, Pinjie</creatorcontrib><creatorcontrib>Liu, Dezhao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular medicine reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Sufang</au><au>Li, Xiang</au><au>Wang, Yanling</au><au>Mu, Panwei</au><au>Chen, Chaojin</au><au>Huang, Pinjie</au><au>Liu, Dezhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion‑induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway</atitle><jtitle>Molecular medicine reports</jtitle><addtitle>Mol Med Rep</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>19</volume><issue>5</issue><spage>3633</spage><epage>3641</epage><pages>3633-3641</pages><issn>1791-2997</issn><eissn>1791-3004</eissn><abstract>Ginsenoside Rb1 (GRb1), one of the major active saponins isolated from ginseng, has recently been reported to protect various organs against ischemia/reperfusion (IR) injury; however, the mechanisms underlying these protective effects following intestinal IR (IIR) remain unclear. The present study aimed to evaluate the effects of GRb1 on IIR injury and determine the mechanisms involved in these effects. Sprague Dawley rats were subjected to 75 min of superior mesenteric artery occlusion, followed by 3 h of reperfusion. GRb1 (15 mg/kg) was administered intraperitoneally 1 h prior to the induction of IIR, with or without intravenous administration of Wortmannin [WM; a phosphoinositide 3‑kinase (PI3K) inhibitor, 0.6 mg/kg]. The degree of intestinal injury and oxidative stress‑induced damage was determined by histopathologic evaluation and measurement of the serum activity levels of D‑lactate, diamine oxidase and endotoxin, and the levels of malondialdehyde (MDA), superoxide dismutase (SOD) and 8‑iso‑prostaglandin F2α (8‑iso‑PGF2α). The protein expression levels of p85, phosphorylated (p)‑p85, protein kinase B (Akt), p‑Akt and nuclear factor erythroid 2‑related factor 2 (Nrf2) were determined via western blotting, and the concentrations of tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑1β and IL‑6 were measured via ELISA. It was revealed that IIR led to severe intestinal injury (as determined by significant increases in intestinal Chiu scores), which was accompanied with disruptions in the integrity of the intestinal mucosal barrier. IIR also increased the expression levels of TNF‑α, IL‑1β, IL‑6, MDA and 8‑iso‑PGF2α in the intestine, and decreased those of SOD. GRb1 reduced intestinal histological injury, and suppressed inflammatory responses and oxidative stress. Additionally, the protective effects of GRb1 were eliminated by WM. These findings indicated that GRb1 may ameliorate IIR injury by activating the PI3K/protein kinase B/Nrf2 pathway.</abstract><cop>Greece</cop><pub>Spandidos Publications</pub><pmid>30864725</pmid><doi>10.3892/mmr.2019.10018</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1791-2997
ispartof Molecular medicine reports, 2019-05, Vol.19 (5), p.3633-3641
issn 1791-2997
1791-3004
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6471656
source Spandidos Publications Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 1-Phosphatidylinositol 3-kinase
Abdomen
AKT protein
Antioxidants
Apoptosis
Care and treatment
Cellular signal transduction
Enzyme-linked immunosorbent assay
Experiments
Ginseng
Ginsenosides
IL-1β
Inflammation
Injuries
Interleukin 6
Interleukins
Intestine
Intestines
Intravenous administration
Ischemia
Kinases
Lactates
Lactic acid
Malondialdehyde
Medical prognosis
Mucosa
Necrosis
Occlusion
Oxidases
Oxidative stress
Phosphorylation
Physiology
Prostaglandins
Protein kinases
Proteins
Reperfusion
Reperfusion injury
Rodents
Saponins
Signal transduction
Studies
Superoxide dismutase
Superoxides
Tumor necrosis factor-α
Tumors
Western blotting
Wortmannin
title Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion‑induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ginsenoside%20Rb1%20attenuates%20intestinal%20ischemia/reperfusion%E2%80%91induced%20inflammation%20and%20oxidative%20stress%20via%20activation%20of%20the%20PI3K/Akt/Nrf2%20signaling%20pathway&rft.jtitle=Molecular%20medicine%20reports&rft.au=Chen,%20Sufang&rft.date=2019-05-01&rft.volume=19&rft.issue=5&rft.spage=3633&rft.epage=3641&rft.pages=3633-3641&rft.issn=1791-2997&rft.eissn=1791-3004&rft_id=info:doi/10.3892/mmr.2019.10018&rft_dat=%3Cgale_pubme%3EA585448514%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211282087&rft_id=info:pmid/30864725&rft_galeid=A585448514&rfr_iscdi=true