Insulin Controls Triacylglycerol Synthesis through Control of Glycerol Metabolism and Despite Increased Lipogenesis

Under normoxic conditions, adipocytes in primary culture convert huge amounts of glucose to lactate and glycerol. This "wasting" of glucose may help to diminish hyperglycemia. Given the importance of insulin in the metabolism, we have studied how it affects adipocyte response to varying gl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2019-02, Vol.11 (3), p.513
Hauptverfasser: Ho-Palma, Ana Cecilia, Toro, Pau, Rotondo, Floriana, Romero, María Del Mar, Alemany, Marià, Remesar, Xavier, Fernández-López, José Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 513
container_title Nutrients
container_volume 11
creator Ho-Palma, Ana Cecilia
Toro, Pau
Rotondo, Floriana
Romero, María Del Mar
Alemany, Marià
Remesar, Xavier
Fernández-López, José Antonio
description Under normoxic conditions, adipocytes in primary culture convert huge amounts of glucose to lactate and glycerol. This "wasting" of glucose may help to diminish hyperglycemia. Given the importance of insulin in the metabolism, we have studied how it affects adipocyte response to varying glucose levels, and whether the high basal conversion of glucose to 3-carbon fragments is affected by insulin. Rat fat cells were incubated for 24 h in the presence or absence of 175 nM insulin and 3.5, 7, or 14 mM glucose; half of the wells contained C-glucose. We analyzed glucose label fate, medium metabolites, and the expression of key genes controlling glucose and lipid metabolism. Insulin increased both glucose uptake and the flow of carbon through glycolysis and lipogenesis. Lactate excretion was related to medium glucose levels, which agrees with the purported role of disposing excess (circulating) glucose. When medium glucose was low, most basal glycerol came from lipolysis, but when glucose was high, release of glycerol via breakup of glycerol-3P was predominant. Although insulin promotes lipogenesis, it also limited the synthesis of glycerol-3P from glucose and its incorporation into acyl-glycerols. We assume that this is a mechanism of adipose tissue defense to avoid crippling fat accumulation which has not yet been described.
doi_str_mv 10.3390/nu11030513
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6470968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2302282933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-c741605c325c1e0bfecdb9b7df1fdb805be0e6bee14abf9a281c950085c4f2963</originalsourceid><addsrcrecordid>eNqFkk2LFDEQhoMo7rLuxR8gAS8ijFaS7qT7Isio68CIB9dzSKerZ7JkkjHpFubfm3ZnxtWLgZCvp95UvRQhzxm8EaKFt2FiDATUTDwilxwUX0hZiccP9hfkOuc7mIcCJcVTciGg4UIoeUnyKuTJu0CXMYwp-kxvkzP24Df-YLFc0G-HMG4xu0zHbYrTZntCaRzozYn6gqPpond5R03o6QfMezciXQWb0GTs6drt4wbDLPSMPBmMz3h9XK_I908fb5efF-uvN6vl-_XCVg0bF1ZVTEJtBa8tQ-gGtH3Xdqof2NB3DdQdAsoOkVWmG1rDG2bbGqCpbTXwVoor8u5edz91O-wtlrSN1_vkdiYddDRO__0S3FZv4k8tKwWtbIoAuxewebI6YSnVmvF34Pkwz9lqLWrGGlZiXh0_TfHHhHnUO5ctem8CxilrzhvZcg4g_4-yRtVMSVkX9OU_6F2cUijuaS6gaPJWiEK9PuabYs4Jh3OtDPTcLfpPtxT4xUN3zuipN8QvJAC8bQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302282933</pqid></control><display><type>article</type><title>Insulin Controls Triacylglycerol Synthesis through Control of Glycerol Metabolism and Despite Increased Lipogenesis</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Recercat</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Ho-Palma, Ana Cecilia ; Toro, Pau ; Rotondo, Floriana ; Romero, María Del Mar ; Alemany, Marià ; Remesar, Xavier ; Fernández-López, José Antonio</creator><creatorcontrib>Ho-Palma, Ana Cecilia ; Toro, Pau ; Rotondo, Floriana ; Romero, María Del Mar ; Alemany, Marià ; Remesar, Xavier ; Fernández-López, José Antonio</creatorcontrib><description>Under normoxic conditions, adipocytes in primary culture convert huge amounts of glucose to lactate and glycerol. This "wasting" of glucose may help to diminish hyperglycemia. Given the importance of insulin in the metabolism, we have studied how it affects adipocyte response to varying glucose levels, and whether the high basal conversion of glucose to 3-carbon fragments is affected by insulin. Rat fat cells were incubated for 24 h in the presence or absence of 175 nM insulin and 3.5, 7, or 14 mM glucose; half of the wells contained C-glucose. We analyzed glucose label fate, medium metabolites, and the expression of key genes controlling glucose and lipid metabolism. Insulin increased both glucose uptake and the flow of carbon through glycolysis and lipogenesis. Lactate excretion was related to medium glucose levels, which agrees with the purported role of disposing excess (circulating) glucose. When medium glucose was low, most basal glycerol came from lipolysis, but when glucose was high, release of glycerol via breakup of glycerol-3P was predominant. Although insulin promotes lipogenesis, it also limited the synthesis of glycerol-3P from glucose and its incorporation into acyl-glycerols. We assume that this is a mechanism of adipose tissue defense to avoid crippling fat accumulation which has not yet been described.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu11030513</identifier><identifier>PMID: 30823376</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acyltransferase ; Adenosine ; Adipocytes ; Adipose tissue ; Biochemistry ; carbon ; CD36 antigen ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; excretion ; Gene expression ; genes ; Glucosa ; Glucose ; Glucose tolerance ; Glycerol ; Glycerol-3-phosphate ; Glycolysis ; Hyperglycemia ; Imports ; Insulin ; Insulin resistance ; Insulina ; Lactic acid ; Lipids ; Lipogenesis ; lipolysis ; Lípids ; Metabolism ; Metabolites ; mRNA ; normoxia ; Obesity ; rats ; Sterol regulatory element-binding protein ; triacylglycerols ; Triglycerides</subject><ispartof>Nutrients, 2019-02, Vol.11 (3), p.513</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>cc-by (c) Ho-Palma, A.C. et al., 2019 info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by/3.0/es"&gt;http://creativecommons.org/licenses/by/3.0/es&lt;/a&gt;</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-c741605c325c1e0bfecdb9b7df1fdb805be0e6bee14abf9a281c950085c4f2963</citedby><cites>FETCH-LOGICAL-c481t-c741605c325c1e0bfecdb9b7df1fdb805be0e6bee14abf9a281c950085c4f2963</cites><orcidid>0000-0002-0688-6856 ; 0000-0002-3228-4074 ; 0000-0002-9707-7287 ; 0000-0002-2856-7223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470968/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470968/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,26951,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30823376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho-Palma, Ana Cecilia</creatorcontrib><creatorcontrib>Toro, Pau</creatorcontrib><creatorcontrib>Rotondo, Floriana</creatorcontrib><creatorcontrib>Romero, María Del Mar</creatorcontrib><creatorcontrib>Alemany, Marià</creatorcontrib><creatorcontrib>Remesar, Xavier</creatorcontrib><creatorcontrib>Fernández-López, José Antonio</creatorcontrib><title>Insulin Controls Triacylglycerol Synthesis through Control of Glycerol Metabolism and Despite Increased Lipogenesis</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>Under normoxic conditions, adipocytes in primary culture convert huge amounts of glucose to lactate and glycerol. This "wasting" of glucose may help to diminish hyperglycemia. Given the importance of insulin in the metabolism, we have studied how it affects adipocyte response to varying glucose levels, and whether the high basal conversion of glucose to 3-carbon fragments is affected by insulin. Rat fat cells were incubated for 24 h in the presence or absence of 175 nM insulin and 3.5, 7, or 14 mM glucose; half of the wells contained C-glucose. We analyzed glucose label fate, medium metabolites, and the expression of key genes controlling glucose and lipid metabolism. Insulin increased both glucose uptake and the flow of carbon through glycolysis and lipogenesis. Lactate excretion was related to medium glucose levels, which agrees with the purported role of disposing excess (circulating) glucose. When medium glucose was low, most basal glycerol came from lipolysis, but when glucose was high, release of glycerol via breakup of glycerol-3P was predominant. Although insulin promotes lipogenesis, it also limited the synthesis of glycerol-3P from glucose and its incorporation into acyl-glycerols. We assume that this is a mechanism of adipose tissue defense to avoid crippling fat accumulation which has not yet been described.</description><subject>Acyltransferase</subject><subject>Adenosine</subject><subject>Adipocytes</subject><subject>Adipose tissue</subject><subject>Biochemistry</subject><subject>carbon</subject><subject>CD36 antigen</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>excretion</subject><subject>Gene expression</subject><subject>genes</subject><subject>Glucosa</subject><subject>Glucose</subject><subject>Glucose tolerance</subject><subject>Glycerol</subject><subject>Glycerol-3-phosphate</subject><subject>Glycolysis</subject><subject>Hyperglycemia</subject><subject>Imports</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Insulina</subject><subject>Lactic acid</subject><subject>Lipids</subject><subject>Lipogenesis</subject><subject>lipolysis</subject><subject>Lípids</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>mRNA</subject><subject>normoxia</subject><subject>Obesity</subject><subject>rats</subject><subject>Sterol regulatory element-binding protein</subject><subject>triacylglycerols</subject><subject>Triglycerides</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>XX2</sourceid><recordid>eNqFkk2LFDEQhoMo7rLuxR8gAS8ijFaS7qT7Isio68CIB9dzSKerZ7JkkjHpFubfm3ZnxtWLgZCvp95UvRQhzxm8EaKFt2FiDATUTDwilxwUX0hZiccP9hfkOuc7mIcCJcVTciGg4UIoeUnyKuTJu0CXMYwp-kxvkzP24Df-YLFc0G-HMG4xu0zHbYrTZntCaRzozYn6gqPpond5R03o6QfMezciXQWb0GTs6drt4wbDLPSMPBmMz3h9XK_I908fb5efF-uvN6vl-_XCVg0bF1ZVTEJtBa8tQ-gGtH3Xdqof2NB3DdQdAsoOkVWmG1rDG2bbGqCpbTXwVoor8u5edz91O-wtlrSN1_vkdiYddDRO__0S3FZv4k8tKwWtbIoAuxewebI6YSnVmvF34Pkwz9lqLWrGGlZiXh0_TfHHhHnUO5ctem8CxilrzhvZcg4g_4-yRtVMSVkX9OU_6F2cUijuaS6gaPJWiEK9PuabYs4Jh3OtDPTcLfpPtxT4xUN3zuipN8QvJAC8bQ</recordid><startdate>20190228</startdate><enddate>20190228</enddate><creator>Ho-Palma, Ana Cecilia</creator><creator>Toro, Pau</creator><creator>Rotondo, Floriana</creator><creator>Romero, María Del Mar</creator><creator>Alemany, Marià</creator><creator>Remesar, Xavier</creator><creator>Fernández-López, José Antonio</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>XX2</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0688-6856</orcidid><orcidid>https://orcid.org/0000-0002-3228-4074</orcidid><orcidid>https://orcid.org/0000-0002-9707-7287</orcidid><orcidid>https://orcid.org/0000-0002-2856-7223</orcidid></search><sort><creationdate>20190228</creationdate><title>Insulin Controls Triacylglycerol Synthesis through Control of Glycerol Metabolism and Despite Increased Lipogenesis</title><author>Ho-Palma, Ana Cecilia ; Toro, Pau ; Rotondo, Floriana ; Romero, María Del Mar ; Alemany, Marià ; Remesar, Xavier ; Fernández-López, José Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-c741605c325c1e0bfecdb9b7df1fdb805be0e6bee14abf9a281c950085c4f2963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acyltransferase</topic><topic>Adenosine</topic><topic>Adipocytes</topic><topic>Adipose tissue</topic><topic>Biochemistry</topic><topic>carbon</topic><topic>CD36 antigen</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>excretion</topic><topic>Gene expression</topic><topic>genes</topic><topic>Glucosa</topic><topic>Glucose</topic><topic>Glucose tolerance</topic><topic>Glycerol</topic><topic>Glycerol-3-phosphate</topic><topic>Glycolysis</topic><topic>Hyperglycemia</topic><topic>Imports</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Insulina</topic><topic>Lactic acid</topic><topic>Lipids</topic><topic>Lipogenesis</topic><topic>lipolysis</topic><topic>Lípids</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>mRNA</topic><topic>normoxia</topic><topic>Obesity</topic><topic>rats</topic><topic>Sterol regulatory element-binding protein</topic><topic>triacylglycerols</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho-Palma, Ana Cecilia</creatorcontrib><creatorcontrib>Toro, Pau</creatorcontrib><creatorcontrib>Rotondo, Floriana</creatorcontrib><creatorcontrib>Romero, María Del Mar</creatorcontrib><creatorcontrib>Alemany, Marià</creatorcontrib><creatorcontrib>Remesar, Xavier</creatorcontrib><creatorcontrib>Fernández-López, José Antonio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho-Palma, Ana Cecilia</au><au>Toro, Pau</au><au>Rotondo, Floriana</au><au>Romero, María Del Mar</au><au>Alemany, Marià</au><au>Remesar, Xavier</au><au>Fernández-López, José Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin Controls Triacylglycerol Synthesis through Control of Glycerol Metabolism and Despite Increased Lipogenesis</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2019-02-28</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>513</spage><pages>513-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>Under normoxic conditions, adipocytes in primary culture convert huge amounts of glucose to lactate and glycerol. This "wasting" of glucose may help to diminish hyperglycemia. Given the importance of insulin in the metabolism, we have studied how it affects adipocyte response to varying glucose levels, and whether the high basal conversion of glucose to 3-carbon fragments is affected by insulin. Rat fat cells were incubated for 24 h in the presence or absence of 175 nM insulin and 3.5, 7, or 14 mM glucose; half of the wells contained C-glucose. We analyzed glucose label fate, medium metabolites, and the expression of key genes controlling glucose and lipid metabolism. Insulin increased both glucose uptake and the flow of carbon through glycolysis and lipogenesis. Lactate excretion was related to medium glucose levels, which agrees with the purported role of disposing excess (circulating) glucose. When medium glucose was low, most basal glycerol came from lipolysis, but when glucose was high, release of glycerol via breakup of glycerol-3P was predominant. Although insulin promotes lipogenesis, it also limited the synthesis of glycerol-3P from glucose and its incorporation into acyl-glycerols. We assume that this is a mechanism of adipose tissue defense to avoid crippling fat accumulation which has not yet been described.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30823376</pmid><doi>10.3390/nu11030513</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0688-6856</orcidid><orcidid>https://orcid.org/0000-0002-3228-4074</orcidid><orcidid>https://orcid.org/0000-0002-9707-7287</orcidid><orcidid>https://orcid.org/0000-0002-2856-7223</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6643
ispartof Nutrients, 2019-02, Vol.11 (3), p.513
issn 2072-6643
2072-6643
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6470968
source MDPI - Multidisciplinary Digital Publishing Institute; Recercat; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Acyltransferase
Adenosine
Adipocytes
Adipose tissue
Biochemistry
carbon
CD36 antigen
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
excretion
Gene expression
genes
Glucosa
Glucose
Glucose tolerance
Glycerol
Glycerol-3-phosphate
Glycolysis
Hyperglycemia
Imports
Insulin
Insulin resistance
Insulina
Lactic acid
Lipids
Lipogenesis
lipolysis
Lípids
Metabolism
Metabolites
mRNA
normoxia
Obesity
rats
Sterol regulatory element-binding protein
triacylglycerols
Triglycerides
title Insulin Controls Triacylglycerol Synthesis through Control of Glycerol Metabolism and Despite Increased Lipogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin%20Controls%20Triacylglycerol%20Synthesis%20through%20Control%20of%20Glycerol%20Metabolism%20and%20Despite%20Increased%20Lipogenesis&rft.jtitle=Nutrients&rft.au=Ho-Palma,%20Ana%20Cecilia&rft.date=2019-02-28&rft.volume=11&rft.issue=3&rft.spage=513&rft.pages=513-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu11030513&rft_dat=%3Cproquest_pubme%3E2302282933%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302282933&rft_id=info:pmid/30823376&rfr_iscdi=true