Slowdown of BCM plasticity with many synapses
During neural development sensory stimulation induces long-term changes in the receptive field of the neurons that encode the stimuli. The Bienenstock-Cooper-Munro (BCM) model was introduced to model and analyze this process computationally, and it remains one of the major models of unsupervised pla...
Gespeichert in:
Veröffentlicht in: | Journal of computational neuroscience 2019-04, Vol.46 (2), p.141-144 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | 2 |
container_start_page | 141 |
container_title | Journal of computational neuroscience |
container_volume | 46 |
creator | Froc, Maxime van Rossum, Mark C. W. |
description | During neural development sensory stimulation induces long-term changes in the receptive field of the neurons that encode the stimuli. The Bienenstock-Cooper-Munro (BCM) model was introduced to model and analyze this process computationally, and it remains one of the major models of unsupervised plasticity to this day. Here we show that for some stimulus types, the convergence of the synaptic weights under the BCM rule slows down exponentially as the number of synapses per neuron increases. We present a mathematical analysis of the slowdown that shows also how the slowdown can be avoided. |
doi_str_mv | 10.1007/s10827-019-00715-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6469599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204695665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e8940fb51ec1e54088b9e981f75fd9fe5f0780150420fe46c0becc00539e0d253</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EoqXwAyxQJDZsDGPHju0NElS8pCIWwNpK3XGbKo1LnFL170kp7wWr0WjO3HlcQg4ZnDIAdRYZaK4oMEPblEmqtkiXSZXSTKt0m3TBcENlytIO2YtxCgBaMdglnRSMMBqgS-hjGZajsKyS4JPL_n0yL_PYFK5oVsmyaCbJLK9WSVxV-Txi3Cc7Pi8jHnzEHnm-vnrq39LBw81d_2JAnVCioaiNAD-UDB1DKUDroUGjmVfSj4xH6UFpYBIEB48iczBE5wBkahBGXKY9cr7RnS-GMxw5rJo6L-28LmZ5vbIhL-zvSlVM7Di82kxkRhrTCpx8CNThZYGxsbMiOizLvMKwiJZzWJNZtp51_AedhkVdteetKW4kFxlvKb6hXB1irNF_LcPArt2wGzds64Z9d8Oqtuno5xlfLZ_vb4F0A8S2VI2x_p79j-wbAKWUQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202952462</pqid></control><display><type>article</type><title>Slowdown of BCM plasticity with many synapses</title><source>SpringerLink Journals - AutoHoldings</source><creator>Froc, Maxime ; van Rossum, Mark C. W.</creator><creatorcontrib>Froc, Maxime ; van Rossum, Mark C. W.</creatorcontrib><description>During neural development sensory stimulation induces long-term changes in the receptive field of the neurons that encode the stimuli. The Bienenstock-Cooper-Munro (BCM) model was introduced to model and analyze this process computationally, and it remains one of the major models of unsupervised plasticity to this day. Here we show that for some stimulus types, the convergence of the synaptic weights under the BCM rule slows down exponentially as the number of synapses per neuron increases. We present a mathematical analysis of the slowdown that shows also how the slowdown can be avoided.</description><identifier>ISSN: 0929-5313</identifier><identifier>EISSN: 1573-6873</identifier><identifier>DOI: 10.1007/s10827-019-00715-7</identifier><identifier>PMID: 30949800</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Human Genetics ; Mathematical analysis ; Mathematical models ; Neurology ; Neurosciences ; Plastic properties ; Plasticity ; Plasticity (neural) ; Receptive field ; Sensory stimulation ; Synapses ; Synaptic strength ; Synaptogenesis ; Theory of Computation</subject><ispartof>Journal of computational neuroscience, 2019-04, Vol.46 (2), p.141-144</ispartof><rights>The Author(s) 2019</rights><rights>Journal of Computational Neuroscience is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e8940fb51ec1e54088b9e981f75fd9fe5f0780150420fe46c0becc00539e0d253</citedby><cites>FETCH-LOGICAL-c474t-e8940fb51ec1e54088b9e981f75fd9fe5f0780150420fe46c0becc00539e0d253</cites><orcidid>0000-0001-6525-6814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10827-019-00715-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10827-019-00715-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30949800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Froc, Maxime</creatorcontrib><creatorcontrib>van Rossum, Mark C. W.</creatorcontrib><title>Slowdown of BCM plasticity with many synapses</title><title>Journal of computational neuroscience</title><addtitle>J Comput Neurosci</addtitle><addtitle>J Comput Neurosci</addtitle><description>During neural development sensory stimulation induces long-term changes in the receptive field of the neurons that encode the stimuli. The Bienenstock-Cooper-Munro (BCM) model was introduced to model and analyze this process computationally, and it remains one of the major models of unsupervised plasticity to this day. Here we show that for some stimulus types, the convergence of the synaptic weights under the BCM rule slows down exponentially as the number of synapses per neuron increases. We present a mathematical analysis of the slowdown that shows also how the slowdown can be avoided.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Human Genetics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Plasticity (neural)</subject><subject>Receptive field</subject><subject>Sensory stimulation</subject><subject>Synapses</subject><subject>Synaptic strength</subject><subject>Synaptogenesis</subject><subject>Theory of Computation</subject><issn>0929-5313</issn><issn>1573-6873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctOwzAQRS0EoqXwAyxQJDZsDGPHju0NElS8pCIWwNpK3XGbKo1LnFL170kp7wWr0WjO3HlcQg4ZnDIAdRYZaK4oMEPblEmqtkiXSZXSTKt0m3TBcENlytIO2YtxCgBaMdglnRSMMBqgS-hjGZajsKyS4JPL_n0yL_PYFK5oVsmyaCbJLK9WSVxV-Txi3Cc7Pi8jHnzEHnm-vnrq39LBw81d_2JAnVCioaiNAD-UDB1DKUDroUGjmVfSj4xH6UFpYBIEB48iczBE5wBkahBGXKY9cr7RnS-GMxw5rJo6L-28LmZ5vbIhL-zvSlVM7Di82kxkRhrTCpx8CNThZYGxsbMiOizLvMKwiJZzWJNZtp51_AedhkVdteetKW4kFxlvKb6hXB1irNF_LcPArt2wGzds64Z9d8Oqtuno5xlfLZ_vb4F0A8S2VI2x_p79j-wbAKWUQQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Froc, Maxime</creator><creator>van Rossum, Mark C. W.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6525-6814</orcidid></search><sort><creationdate>20190401</creationdate><title>Slowdown of BCM plasticity with many synapses</title><author>Froc, Maxime ; van Rossum, Mark C. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e8940fb51ec1e54088b9e981f75fd9fe5f0780150420fe46c0becc00539e0d253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Human Genetics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Plasticity (neural)</topic><topic>Receptive field</topic><topic>Sensory stimulation</topic><topic>Synapses</topic><topic>Synaptic strength</topic><topic>Synaptogenesis</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Froc, Maxime</creatorcontrib><creatorcontrib>van Rossum, Mark C. W.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Froc, Maxime</au><au>van Rossum, Mark C. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slowdown of BCM plasticity with many synapses</atitle><jtitle>Journal of computational neuroscience</jtitle><stitle>J Comput Neurosci</stitle><addtitle>J Comput Neurosci</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>46</volume><issue>2</issue><spage>141</spage><epage>144</epage><pages>141-144</pages><issn>0929-5313</issn><eissn>1573-6873</eissn><abstract>During neural development sensory stimulation induces long-term changes in the receptive field of the neurons that encode the stimuli. The Bienenstock-Cooper-Munro (BCM) model was introduced to model and analyze this process computationally, and it remains one of the major models of unsupervised plasticity to this day. Here we show that for some stimulus types, the convergence of the synaptic weights under the BCM rule slows down exponentially as the number of synapses per neuron increases. We present a mathematical analysis of the slowdown that shows also how the slowdown can be avoided.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30949800</pmid><doi>10.1007/s10827-019-00715-7</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6525-6814</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5313 |
ispartof | Journal of computational neuroscience, 2019-04, Vol.46 (2), p.141-144 |
issn | 0929-5313 1573-6873 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6469599 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biomedical and Life Sciences Biomedicine Human Genetics Mathematical analysis Mathematical models Neurology Neurosciences Plastic properties Plasticity Plasticity (neural) Receptive field Sensory stimulation Synapses Synaptic strength Synaptogenesis Theory of Computation |
title | Slowdown of BCM plasticity with many synapses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slowdown%20of%20BCM%20plasticity%20with%20many%20synapses&rft.jtitle=Journal%20of%20computational%20neuroscience&rft.au=Froc,%20Maxime&rft.date=2019-04-01&rft.volume=46&rft.issue=2&rft.spage=141&rft.epage=144&rft.pages=141-144&rft.issn=0929-5313&rft.eissn=1573-6873&rft_id=info:doi/10.1007/s10827-019-00715-7&rft_dat=%3Cproquest_pubme%3E2204695665%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202952462&rft_id=info:pmid/30949800&rfr_iscdi=true |