Application of an indoor air pollution metamodel to a spatially-distributed housing stock

Estimates of population air pollution exposure typically rely on the outdoor component only, and rarely account for populations spending the majority of their time indoors. Housing is an important modifier of air pollution exposure due to outdoor pollution infiltrating indoors, and the removal of in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2019-06, Vol.667, p.390-399
Hauptverfasser: Taylor, Jonathon, Shrubsole, Clive, Symonds, Phil, Mackenzie, Ian, Davies, Mike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Estimates of population air pollution exposure typically rely on the outdoor component only, and rarely account for populations spending the majority of their time indoors. Housing is an important modifier of air pollution exposure due to outdoor pollution infiltrating indoors, and the removal of indoor-sourced pollution through active or passive ventilation. Here, we describe the application of an indoor air pollution modelling tool to a spatially distributed housing stock model for England and Wales, developed from Energy Performance Certificate (EPC) data and containing information for approximately 11.5 million dwellings. First, we estimate indoor/outdoor (I/O) ratios and total indoor concentrations of outdoor air pollution for PM2.5 and NO2 for all EPC dwellings in London. The potential to estimate concentration from both indoor and outdoor sources is then demonstrated by modelling indoor background CO levels for England and Wales pre- and post-energy efficient adaptation, including heating, cooking, and smoking as internal sources. In London, we predict a median I/O ratio of 0.60 (99% CIs; 0.53–0.73) for outdoor PM2.5 and 0.41 (99%CIs; 0.34–0.59) for outdoor NO2; Pearson correlation analysis indicates a greater spatial modification of PM2.5 exposure by housing (ρ = 0.81) than NO2 (ρ = 0.88). For the demonstrative CO model, concentrations ranged from 0.4–9.9 ppm (99%CIs)(median = 3.0 ppm) in kitchens and 0.3–25.6 ppm (median = 6.4 ppm) in living rooms. Clusters of elevated indoor concentration are found in urban areas due to higher outdoor concentrations and smaller dwellings with reduced ventilation potential, with an estimated 17.6% increase in the number of living rooms and 63% increase in the number of kitchens exceeding recommended exposure levels following retrofit without additional ventilation. The model has the potential to rapidly calculate indoor pollution exposure across large housing stocks and estimate changes to exposure under different pollution or housing policy scenarios. [Display omitted] •A housing stock model representing 11.5 M English and Welsh dwellings is described.•An IAQ metamodel is applied to dwellings in London (PM2.5 & NO2) and nationally (CO).•Exposure to outdoor NO2 & PM2.5 and outdoor and indoor-sourced CO is estimated.•Housing has a greater modification of outdoor PM2.5 levels than for NO2.•Energy retrofits without added ventilation may increase CO exposures by 18–63%.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2019.02.341