Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps

Neutrophil extracellular traps (NETs) are decondensed chromatin networks released by neutrophils that can trap and kill pathogens but can also paradoxically promote biofilms. The mechanism of NET functions remains ambiguous, at least in part, due to their complex and variable compositions. To unrave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2019-04, Vol.31 (14), p.e1807436-n/a
Hauptverfasser: Song, Yang, Kadiyala, Usha, Weerappuli, Priyan, Valdez, Jordan J., Yalavarthi, Srilakshmi, Louttit, Cameron, Knight, Jason S., Moon, James J., Weiss, David S., VanEpps, J. Scott, Takayama, Shuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page e1807436
container_title Advanced materials (Weinheim)
container_volume 31
creator Song, Yang
Kadiyala, Usha
Weerappuli, Priyan
Valdez, Jordan J.
Yalavarthi, Srilakshmi
Louttit, Cameron
Knight, Jason S.
Moon, James J.
Weiss, David S.
VanEpps, J. Scott
Takayama, Shuichi
description Neutrophil extracellular traps (NETs) are decondensed chromatin networks released by neutrophils that can trap and kill pathogens but can also paradoxically promote biofilms. The mechanism of NET functions remains ambiguous, at least in part, due to their complex and variable compositions. To unravel the antimicrobial performance of NETs, a minimalistic NET‐like synthetic structure, termed “microwebs,” is produced by the sonochemical complexation of DNA and histone. The prepared microwebs have structural similarity to NETs at the nanometer to micrometer dimensions but with well‐defined molecular compositions. Microwebs prepared with different DNA to histone ratios show that microwebs trap pathogenic Escherichia coli in a manner similar to NETs when the zeta potential of the microwebs is positive. The DNA nanofiber networks and the bactericidal histone constituting the microwebs inhibit the growth of E. coli. Moreover, microwebs work synergistically with colistin sulfate, a common and a last‐resort antibiotic, by targeting the cell envelope of pathogenic bacteria. The synthesis of microwebs enables mechanistic studies not possible with NETs, and it opens new possibilities for constructing biomimetic bacterial microenvironments to better understand and predict physiological pathogen responses. Microwebs with bacteria trapping and killing functions are designed to mimic neutrophil extracellular traps—an immune defense weapon to fight against invading pathogens. The composition–structure–function relationship of the synthetic structure is discussed, and the collaborative action between microwebs and antibiotics allows better elimination of pathogenic bacteria, Escherichia coli.
doi_str_mv 10.1002/adma.201807436
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6467213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179476231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5056-956b21bed5792fc92173e9a2852ecc34253b51c0f6ee2306b75ac933135751d03</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EotOBLUsUiQ2bDNd27MQbpKgttFJbNu3acpwb6iqJg51QuuMdeMM-CR5NGX42rGzJx9895x5CXlHYUAD2zrSD2TCgFZQFl0_IigpG8wKUeEpWoLjIlSyqA3IY4y0AKAnyOTngIFVVFcWKXNfj7AZng2-c6bOL7e0Om5j5Lju-rB--_zh1cfYjZmdjnFzANuuCH7JLXObgpxvXZyff5mAs9v3Sm5BdBTPFF-RZZ_qILx_PNbn-cHJ1dJqff_p4dlSf51aAkLkSsmG0wVaUinVWMVpyVIZVgqG1vGCCN4Ja6CQiS56bUhirOKdclIK2wNfk_Y47Lc2ArcUxWen1FNxgwr32xum_X0Z3oz_7r1oWsmSUJ8DbR0DwXxaMsx5c3GYxI_ol6uRIFaVkaeSavPlHeuuXMKZ4mqUCSpA74GanSnuMMWC3N0NBbxvT28b0vrH04fWfEfbyXxUlgdoJ7lyP9__B6fr4ov4N_wl4R6N3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201706213</pqid></control><display><type>article</type><title>Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Song, Yang ; Kadiyala, Usha ; Weerappuli, Priyan ; Valdez, Jordan J. ; Yalavarthi, Srilakshmi ; Louttit, Cameron ; Knight, Jason S. ; Moon, James J. ; Weiss, David S. ; VanEpps, J. Scott ; Takayama, Shuichi</creator><creatorcontrib>Song, Yang ; Kadiyala, Usha ; Weerappuli, Priyan ; Valdez, Jordan J. ; Yalavarthi, Srilakshmi ; Louttit, Cameron ; Knight, Jason S. ; Moon, James J. ; Weiss, David S. ; VanEpps, J. Scott ; Takayama, Shuichi</creatorcontrib><description>Neutrophil extracellular traps (NETs) are decondensed chromatin networks released by neutrophils that can trap and kill pathogens but can also paradoxically promote biofilms. The mechanism of NET functions remains ambiguous, at least in part, due to their complex and variable compositions. To unravel the antimicrobial performance of NETs, a minimalistic NET‐like synthetic structure, termed “microwebs,” is produced by the sonochemical complexation of DNA and histone. The prepared microwebs have structural similarity to NETs at the nanometer to micrometer dimensions but with well‐defined molecular compositions. Microwebs prepared with different DNA to histone ratios show that microwebs trap pathogenic Escherichia coli in a manner similar to NETs when the zeta potential of the microwebs is positive. The DNA nanofiber networks and the bactericidal histone constituting the microwebs inhibit the growth of E. coli. Moreover, microwebs work synergistically with colistin sulfate, a common and a last‐resort antibiotic, by targeting the cell envelope of pathogenic bacteria. The synthesis of microwebs enables mechanistic studies not possible with NETs, and it opens new possibilities for constructing biomimetic bacterial microenvironments to better understand and predict physiological pathogen responses. Microwebs with bacteria trapping and killing functions are designed to mimic neutrophil extracellular traps—an immune defense weapon to fight against invading pathogens. The composition–structure–function relationship of the synthetic structure is discussed, and the collaborative action between microwebs and antibiotics allows better elimination of pathogenic bacteria, Escherichia coli.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201807436</identifier><identifier>PMID: 30698844</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anti-Bacterial Agents - metabolism ; Anti-Bacterial Agents - pharmacology ; antibiotic resistance ; Antibiotics ; Antiinfectives and antibacterials ; bacteria E. coli ; biomimetic materials ; Biomimetic Materials - metabolism ; Biomimetic Materials - pharmacology ; Biomimetics ; Chemical composition ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA nanofiber networks ; E coli ; Escherichia coli - cytology ; Escherichia coli - drug effects ; Extracellular Traps - metabolism ; Histones - metabolism ; Materials science ; Nanofibers ; neutrophil extracellular traps ; Neutrophils ; Neutrophils - cytology ; Pathogens ; Zeta potential</subject><ispartof>Advanced materials (Weinheim), 2019-04, Vol.31 (14), p.e1807436-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5056-956b21bed5792fc92173e9a2852ecc34253b51c0f6ee2306b75ac933135751d03</citedby><cites>FETCH-LOGICAL-c5056-956b21bed5792fc92173e9a2852ecc34253b51c0f6ee2306b75ac933135751d03</cites><orcidid>0000-0002-4914-8490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201807436$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201807436$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30698844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Kadiyala, Usha</creatorcontrib><creatorcontrib>Weerappuli, Priyan</creatorcontrib><creatorcontrib>Valdez, Jordan J.</creatorcontrib><creatorcontrib>Yalavarthi, Srilakshmi</creatorcontrib><creatorcontrib>Louttit, Cameron</creatorcontrib><creatorcontrib>Knight, Jason S.</creatorcontrib><creatorcontrib>Moon, James J.</creatorcontrib><creatorcontrib>Weiss, David S.</creatorcontrib><creatorcontrib>VanEpps, J. Scott</creatorcontrib><creatorcontrib>Takayama, Shuichi</creatorcontrib><title>Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Neutrophil extracellular traps (NETs) are decondensed chromatin networks released by neutrophils that can trap and kill pathogens but can also paradoxically promote biofilms. The mechanism of NET functions remains ambiguous, at least in part, due to their complex and variable compositions. To unravel the antimicrobial performance of NETs, a minimalistic NET‐like synthetic structure, termed “microwebs,” is produced by the sonochemical complexation of DNA and histone. The prepared microwebs have structural similarity to NETs at the nanometer to micrometer dimensions but with well‐defined molecular compositions. Microwebs prepared with different DNA to histone ratios show that microwebs trap pathogenic Escherichia coli in a manner similar to NETs when the zeta potential of the microwebs is positive. The DNA nanofiber networks and the bactericidal histone constituting the microwebs inhibit the growth of E. coli. Moreover, microwebs work synergistically with colistin sulfate, a common and a last‐resort antibiotic, by targeting the cell envelope of pathogenic bacteria. The synthesis of microwebs enables mechanistic studies not possible with NETs, and it opens new possibilities for constructing biomimetic bacterial microenvironments to better understand and predict physiological pathogen responses. Microwebs with bacteria trapping and killing functions are designed to mimic neutrophil extracellular traps—an immune defense weapon to fight against invading pathogens. The composition–structure–function relationship of the synthetic structure is discussed, and the collaborative action between microwebs and antibiotics allows better elimination of pathogenic bacteria, Escherichia coli.</description><subject>Anti-Bacterial Agents - metabolism</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antibiotic resistance</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>bacteria E. coli</subject><subject>biomimetic materials</subject><subject>Biomimetic Materials - metabolism</subject><subject>Biomimetic Materials - pharmacology</subject><subject>Biomimetics</subject><subject>Chemical composition</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA nanofiber networks</subject><subject>E coli</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - drug effects</subject><subject>Extracellular Traps - metabolism</subject><subject>Histones - metabolism</subject><subject>Materials science</subject><subject>Nanofibers</subject><subject>neutrophil extracellular traps</subject><subject>Neutrophils</subject><subject>Neutrophils - cytology</subject><subject>Pathogens</subject><subject>Zeta potential</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EotOBLUsUiQ2bDNd27MQbpKgttFJbNu3acpwb6iqJg51QuuMdeMM-CR5NGX42rGzJx9895x5CXlHYUAD2zrSD2TCgFZQFl0_IigpG8wKUeEpWoLjIlSyqA3IY4y0AKAnyOTngIFVVFcWKXNfj7AZng2-c6bOL7e0Om5j5Lju-rB--_zh1cfYjZmdjnFzANuuCH7JLXObgpxvXZyff5mAs9v3Sm5BdBTPFF-RZZ_qILx_PNbn-cHJ1dJqff_p4dlSf51aAkLkSsmG0wVaUinVWMVpyVIZVgqG1vGCCN4Ja6CQiS56bUhirOKdclIK2wNfk_Y47Lc2ArcUxWen1FNxgwr32xum_X0Z3oz_7r1oWsmSUJ8DbR0DwXxaMsx5c3GYxI_ol6uRIFaVkaeSavPlHeuuXMKZ4mqUCSpA74GanSnuMMWC3N0NBbxvT28b0vrH04fWfEfbyXxUlgdoJ7lyP9__B6fr4ov4N_wl4R6N3</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Song, Yang</creator><creator>Kadiyala, Usha</creator><creator>Weerappuli, Priyan</creator><creator>Valdez, Jordan J.</creator><creator>Yalavarthi, Srilakshmi</creator><creator>Louttit, Cameron</creator><creator>Knight, Jason S.</creator><creator>Moon, James J.</creator><creator>Weiss, David S.</creator><creator>VanEpps, J. Scott</creator><creator>Takayama, Shuichi</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4914-8490</orcidid></search><sort><creationdate>201904</creationdate><title>Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps</title><author>Song, Yang ; Kadiyala, Usha ; Weerappuli, Priyan ; Valdez, Jordan J. ; Yalavarthi, Srilakshmi ; Louttit, Cameron ; Knight, Jason S. ; Moon, James J. ; Weiss, David S. ; VanEpps, J. Scott ; Takayama, Shuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5056-956b21bed5792fc92173e9a2852ecc34253b51c0f6ee2306b75ac933135751d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anti-Bacterial Agents - metabolism</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antibiotic resistance</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>bacteria E. coli</topic><topic>biomimetic materials</topic><topic>Biomimetic Materials - metabolism</topic><topic>Biomimetic Materials - pharmacology</topic><topic>Biomimetics</topic><topic>Chemical composition</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA nanofiber networks</topic><topic>E coli</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - drug effects</topic><topic>Extracellular Traps - metabolism</topic><topic>Histones - metabolism</topic><topic>Materials science</topic><topic>Nanofibers</topic><topic>neutrophil extracellular traps</topic><topic>Neutrophils</topic><topic>Neutrophils - cytology</topic><topic>Pathogens</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Kadiyala, Usha</creatorcontrib><creatorcontrib>Weerappuli, Priyan</creatorcontrib><creatorcontrib>Valdez, Jordan J.</creatorcontrib><creatorcontrib>Yalavarthi, Srilakshmi</creatorcontrib><creatorcontrib>Louttit, Cameron</creatorcontrib><creatorcontrib>Knight, Jason S.</creatorcontrib><creatorcontrib>Moon, James J.</creatorcontrib><creatorcontrib>Weiss, David S.</creatorcontrib><creatorcontrib>VanEpps, J. Scott</creatorcontrib><creatorcontrib>Takayama, Shuichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yang</au><au>Kadiyala, Usha</au><au>Weerappuli, Priyan</au><au>Valdez, Jordan J.</au><au>Yalavarthi, Srilakshmi</au><au>Louttit, Cameron</au><au>Knight, Jason S.</au><au>Moon, James J.</au><au>Weiss, David S.</au><au>VanEpps, J. Scott</au><au>Takayama, Shuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-04</date><risdate>2019</risdate><volume>31</volume><issue>14</issue><spage>e1807436</spage><epage>n/a</epage><pages>e1807436-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Neutrophil extracellular traps (NETs) are decondensed chromatin networks released by neutrophils that can trap and kill pathogens but can also paradoxically promote biofilms. The mechanism of NET functions remains ambiguous, at least in part, due to their complex and variable compositions. To unravel the antimicrobial performance of NETs, a minimalistic NET‐like synthetic structure, termed “microwebs,” is produced by the sonochemical complexation of DNA and histone. The prepared microwebs have structural similarity to NETs at the nanometer to micrometer dimensions but with well‐defined molecular compositions. Microwebs prepared with different DNA to histone ratios show that microwebs trap pathogenic Escherichia coli in a manner similar to NETs when the zeta potential of the microwebs is positive. The DNA nanofiber networks and the bactericidal histone constituting the microwebs inhibit the growth of E. coli. Moreover, microwebs work synergistically with colistin sulfate, a common and a last‐resort antibiotic, by targeting the cell envelope of pathogenic bacteria. The synthesis of microwebs enables mechanistic studies not possible with NETs, and it opens new possibilities for constructing biomimetic bacterial microenvironments to better understand and predict physiological pathogen responses. Microwebs with bacteria trapping and killing functions are designed to mimic neutrophil extracellular traps—an immune defense weapon to fight against invading pathogens. The composition–structure–function relationship of the synthetic structure is discussed, and the collaborative action between microwebs and antibiotics allows better elimination of pathogenic bacteria, Escherichia coli.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30698844</pmid><doi>10.1002/adma.201807436</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4914-8490</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-04, Vol.31 (14), p.e1807436-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6467213
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Anti-Bacterial Agents - metabolism
Anti-Bacterial Agents - pharmacology
antibiotic resistance
Antibiotics
Antiinfectives and antibacterials
bacteria E. coli
biomimetic materials
Biomimetic Materials - metabolism
Biomimetic Materials - pharmacology
Biomimetics
Chemical composition
Deoxyribonucleic acid
DNA
DNA - metabolism
DNA nanofiber networks
E coli
Escherichia coli - cytology
Escherichia coli - drug effects
Extracellular Traps - metabolism
Histones - metabolism
Materials science
Nanofibers
neutrophil extracellular traps
Neutrophils
Neutrophils - cytology
Pathogens
Zeta potential
title Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimicrobial%20Microwebs%20of%20DNA%E2%80%93Histone%20Inspired%20from%20Neutrophil%20Extracellular%20Traps&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Song,%20Yang&rft.date=2019-04&rft.volume=31&rft.issue=14&rft.spage=e1807436&rft.epage=n/a&rft.pages=e1807436-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201807436&rft_dat=%3Cproquest_pubme%3E2179476231%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2201706213&rft_id=info:pmid/30698844&rfr_iscdi=true