Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps
Neutrophil extracellular traps (NETs) are decondensed chromatin networks released by neutrophils that can trap and kill pathogens but can also paradoxically promote biofilms. The mechanism of NET functions remains ambiguous, at least in part, due to their complex and variable compositions. To unrave...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2019-04, Vol.31 (14), p.e1807436-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 14 |
container_start_page | e1807436 |
container_title | Advanced materials (Weinheim) |
container_volume | 31 |
creator | Song, Yang Kadiyala, Usha Weerappuli, Priyan Valdez, Jordan J. Yalavarthi, Srilakshmi Louttit, Cameron Knight, Jason S. Moon, James J. Weiss, David S. VanEpps, J. Scott Takayama, Shuichi |
description | Neutrophil extracellular traps (NETs) are decondensed chromatin networks released by neutrophils that can trap and kill pathogens but can also paradoxically promote biofilms. The mechanism of NET functions remains ambiguous, at least in part, due to their complex and variable compositions. To unravel the antimicrobial performance of NETs, a minimalistic NET‐like synthetic structure, termed “microwebs,” is produced by the sonochemical complexation of DNA and histone. The prepared microwebs have structural similarity to NETs at the nanometer to micrometer dimensions but with well‐defined molecular compositions. Microwebs prepared with different DNA to histone ratios show that microwebs trap pathogenic Escherichia coli in a manner similar to NETs when the zeta potential of the microwebs is positive. The DNA nanofiber networks and the bactericidal histone constituting the microwebs inhibit the growth of E. coli. Moreover, microwebs work synergistically with colistin sulfate, a common and a last‐resort antibiotic, by targeting the cell envelope of pathogenic bacteria. The synthesis of microwebs enables mechanistic studies not possible with NETs, and it opens new possibilities for constructing biomimetic bacterial microenvironments to better understand and predict physiological pathogen responses.
Microwebs with bacteria trapping and killing functions are designed to mimic neutrophil extracellular traps—an immune defense weapon to fight against invading pathogens. The composition–structure–function relationship of the synthetic structure is discussed, and the collaborative action between microwebs and antibiotics allows better elimination of pathogenic bacteria, Escherichia coli. |
doi_str_mv | 10.1002/adma.201807436 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6467213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179476231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5056-956b21bed5792fc92173e9a2852ecc34253b51c0f6ee2306b75ac933135751d03</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EotOBLUsUiQ2bDNd27MQbpKgttFJbNu3acpwb6iqJg51QuuMdeMM-CR5NGX42rGzJx9895x5CXlHYUAD2zrSD2TCgFZQFl0_IigpG8wKUeEpWoLjIlSyqA3IY4y0AKAnyOTngIFVVFcWKXNfj7AZng2-c6bOL7e0Om5j5Lju-rB--_zh1cfYjZmdjnFzANuuCH7JLXObgpxvXZyff5mAs9v3Sm5BdBTPFF-RZZ_qILx_PNbn-cHJ1dJqff_p4dlSf51aAkLkSsmG0wVaUinVWMVpyVIZVgqG1vGCCN4Ja6CQiS56bUhirOKdclIK2wNfk_Y47Lc2ArcUxWen1FNxgwr32xum_X0Z3oz_7r1oWsmSUJ8DbR0DwXxaMsx5c3GYxI_ol6uRIFaVkaeSavPlHeuuXMKZ4mqUCSpA74GanSnuMMWC3N0NBbxvT28b0vrH04fWfEfbyXxUlgdoJ7lyP9__B6fr4ov4N_wl4R6N3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201706213</pqid></control><display><type>article</type><title>Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Song, Yang ; Kadiyala, Usha ; Weerappuli, Priyan ; Valdez, Jordan J. ; Yalavarthi, Srilakshmi ; Louttit, Cameron ; Knight, Jason S. ; Moon, James J. ; Weiss, David S. ; VanEpps, J. Scott ; Takayama, Shuichi</creator><creatorcontrib>Song, Yang ; Kadiyala, Usha ; Weerappuli, Priyan ; Valdez, Jordan J. ; Yalavarthi, Srilakshmi ; Louttit, Cameron ; Knight, Jason S. ; Moon, James J. ; Weiss, David S. ; VanEpps, J. Scott ; Takayama, Shuichi</creatorcontrib><description>Neutrophil extracellular traps (NETs) are decondensed chromatin networks released by neutrophils that can trap and kill pathogens but can also paradoxically promote biofilms. The mechanism of NET functions remains ambiguous, at least in part, due to their complex and variable compositions. To unravel the antimicrobial performance of NETs, a minimalistic NET‐like synthetic structure, termed “microwebs,” is produced by the sonochemical complexation of DNA and histone. The prepared microwebs have structural similarity to NETs at the nanometer to micrometer dimensions but with well‐defined molecular compositions. Microwebs prepared with different DNA to histone ratios show that microwebs trap pathogenic Escherichia coli in a manner similar to NETs when the zeta potential of the microwebs is positive. The DNA nanofiber networks and the bactericidal histone constituting the microwebs inhibit the growth of E. coli. Moreover, microwebs work synergistically with colistin sulfate, a common and a last‐resort antibiotic, by targeting the cell envelope of pathogenic bacteria. The synthesis of microwebs enables mechanistic studies not possible with NETs, and it opens new possibilities for constructing biomimetic bacterial microenvironments to better understand and predict physiological pathogen responses.
Microwebs with bacteria trapping and killing functions are designed to mimic neutrophil extracellular traps—an immune defense weapon to fight against invading pathogens. The composition–structure–function relationship of the synthetic structure is discussed, and the collaborative action between microwebs and antibiotics allows better elimination of pathogenic bacteria, Escherichia coli.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201807436</identifier><identifier>PMID: 30698844</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anti-Bacterial Agents - metabolism ; Anti-Bacterial Agents - pharmacology ; antibiotic resistance ; Antibiotics ; Antiinfectives and antibacterials ; bacteria E. coli ; biomimetic materials ; Biomimetic Materials - metabolism ; Biomimetic Materials - pharmacology ; Biomimetics ; Chemical composition ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA nanofiber networks ; E coli ; Escherichia coli - cytology ; Escherichia coli - drug effects ; Extracellular Traps - metabolism ; Histones - metabolism ; Materials science ; Nanofibers ; neutrophil extracellular traps ; Neutrophils ; Neutrophils - cytology ; Pathogens ; Zeta potential</subject><ispartof>Advanced materials (Weinheim), 2019-04, Vol.31 (14), p.e1807436-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5056-956b21bed5792fc92173e9a2852ecc34253b51c0f6ee2306b75ac933135751d03</citedby><cites>FETCH-LOGICAL-c5056-956b21bed5792fc92173e9a2852ecc34253b51c0f6ee2306b75ac933135751d03</cites><orcidid>0000-0002-4914-8490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201807436$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201807436$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30698844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Kadiyala, Usha</creatorcontrib><creatorcontrib>Weerappuli, Priyan</creatorcontrib><creatorcontrib>Valdez, Jordan J.</creatorcontrib><creatorcontrib>Yalavarthi, Srilakshmi</creatorcontrib><creatorcontrib>Louttit, Cameron</creatorcontrib><creatorcontrib>Knight, Jason S.</creatorcontrib><creatorcontrib>Moon, James J.</creatorcontrib><creatorcontrib>Weiss, David S.</creatorcontrib><creatorcontrib>VanEpps, J. Scott</creatorcontrib><creatorcontrib>Takayama, Shuichi</creatorcontrib><title>Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Neutrophil extracellular traps (NETs) are decondensed chromatin networks released by neutrophils that can trap and kill pathogens but can also paradoxically promote biofilms. The mechanism of NET functions remains ambiguous, at least in part, due to their complex and variable compositions. To unravel the antimicrobial performance of NETs, a minimalistic NET‐like synthetic structure, termed “microwebs,” is produced by the sonochemical complexation of DNA and histone. The prepared microwebs have structural similarity to NETs at the nanometer to micrometer dimensions but with well‐defined molecular compositions. Microwebs prepared with different DNA to histone ratios show that microwebs trap pathogenic Escherichia coli in a manner similar to NETs when the zeta potential of the microwebs is positive. The DNA nanofiber networks and the bactericidal histone constituting the microwebs inhibit the growth of E. coli. Moreover, microwebs work synergistically with colistin sulfate, a common and a last‐resort antibiotic, by targeting the cell envelope of pathogenic bacteria. The synthesis of microwebs enables mechanistic studies not possible with NETs, and it opens new possibilities for constructing biomimetic bacterial microenvironments to better understand and predict physiological pathogen responses.
Microwebs with bacteria trapping and killing functions are designed to mimic neutrophil extracellular traps—an immune defense weapon to fight against invading pathogens. The composition–structure–function relationship of the synthetic structure is discussed, and the collaborative action between microwebs and antibiotics allows better elimination of pathogenic bacteria, Escherichia coli.</description><subject>Anti-Bacterial Agents - metabolism</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antibiotic resistance</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>bacteria E. coli</subject><subject>biomimetic materials</subject><subject>Biomimetic Materials - metabolism</subject><subject>Biomimetic Materials - pharmacology</subject><subject>Biomimetics</subject><subject>Chemical composition</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA nanofiber networks</subject><subject>E coli</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - drug effects</subject><subject>Extracellular Traps - metabolism</subject><subject>Histones - metabolism</subject><subject>Materials science</subject><subject>Nanofibers</subject><subject>neutrophil extracellular traps</subject><subject>Neutrophils</subject><subject>Neutrophils - cytology</subject><subject>Pathogens</subject><subject>Zeta potential</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EotOBLUsUiQ2bDNd27MQbpKgttFJbNu3acpwb6iqJg51QuuMdeMM-CR5NGX42rGzJx9895x5CXlHYUAD2zrSD2TCgFZQFl0_IigpG8wKUeEpWoLjIlSyqA3IY4y0AKAnyOTngIFVVFcWKXNfj7AZng2-c6bOL7e0Om5j5Lju-rB--_zh1cfYjZmdjnFzANuuCH7JLXObgpxvXZyff5mAs9v3Sm5BdBTPFF-RZZ_qILx_PNbn-cHJ1dJqff_p4dlSf51aAkLkSsmG0wVaUinVWMVpyVIZVgqG1vGCCN4Ja6CQiS56bUhirOKdclIK2wNfk_Y47Lc2ArcUxWen1FNxgwr32xum_X0Z3oz_7r1oWsmSUJ8DbR0DwXxaMsx5c3GYxI_ol6uRIFaVkaeSavPlHeuuXMKZ4mqUCSpA74GanSnuMMWC3N0NBbxvT28b0vrH04fWfEfbyXxUlgdoJ7lyP9__B6fr4ov4N_wl4R6N3</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Song, Yang</creator><creator>Kadiyala, Usha</creator><creator>Weerappuli, Priyan</creator><creator>Valdez, Jordan J.</creator><creator>Yalavarthi, Srilakshmi</creator><creator>Louttit, Cameron</creator><creator>Knight, Jason S.</creator><creator>Moon, James J.</creator><creator>Weiss, David S.</creator><creator>VanEpps, J. Scott</creator><creator>Takayama, Shuichi</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4914-8490</orcidid></search><sort><creationdate>201904</creationdate><title>Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps</title><author>Song, Yang ; Kadiyala, Usha ; Weerappuli, Priyan ; Valdez, Jordan J. ; Yalavarthi, Srilakshmi ; Louttit, Cameron ; Knight, Jason S. ; Moon, James J. ; Weiss, David S. ; VanEpps, J. Scott ; Takayama, Shuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5056-956b21bed5792fc92173e9a2852ecc34253b51c0f6ee2306b75ac933135751d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anti-Bacterial Agents - metabolism</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antibiotic resistance</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>bacteria E. coli</topic><topic>biomimetic materials</topic><topic>Biomimetic Materials - metabolism</topic><topic>Biomimetic Materials - pharmacology</topic><topic>Biomimetics</topic><topic>Chemical composition</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA nanofiber networks</topic><topic>E coli</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - drug effects</topic><topic>Extracellular Traps - metabolism</topic><topic>Histones - metabolism</topic><topic>Materials science</topic><topic>Nanofibers</topic><topic>neutrophil extracellular traps</topic><topic>Neutrophils</topic><topic>Neutrophils - cytology</topic><topic>Pathogens</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Kadiyala, Usha</creatorcontrib><creatorcontrib>Weerappuli, Priyan</creatorcontrib><creatorcontrib>Valdez, Jordan J.</creatorcontrib><creatorcontrib>Yalavarthi, Srilakshmi</creatorcontrib><creatorcontrib>Louttit, Cameron</creatorcontrib><creatorcontrib>Knight, Jason S.</creatorcontrib><creatorcontrib>Moon, James J.</creatorcontrib><creatorcontrib>Weiss, David S.</creatorcontrib><creatorcontrib>VanEpps, J. Scott</creatorcontrib><creatorcontrib>Takayama, Shuichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yang</au><au>Kadiyala, Usha</au><au>Weerappuli, Priyan</au><au>Valdez, Jordan J.</au><au>Yalavarthi, Srilakshmi</au><au>Louttit, Cameron</au><au>Knight, Jason S.</au><au>Moon, James J.</au><au>Weiss, David S.</au><au>VanEpps, J. Scott</au><au>Takayama, Shuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-04</date><risdate>2019</risdate><volume>31</volume><issue>14</issue><spage>e1807436</spage><epage>n/a</epage><pages>e1807436-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Neutrophil extracellular traps (NETs) are decondensed chromatin networks released by neutrophils that can trap and kill pathogens but can also paradoxically promote biofilms. The mechanism of NET functions remains ambiguous, at least in part, due to their complex and variable compositions. To unravel the antimicrobial performance of NETs, a minimalistic NET‐like synthetic structure, termed “microwebs,” is produced by the sonochemical complexation of DNA and histone. The prepared microwebs have structural similarity to NETs at the nanometer to micrometer dimensions but with well‐defined molecular compositions. Microwebs prepared with different DNA to histone ratios show that microwebs trap pathogenic Escherichia coli in a manner similar to NETs when the zeta potential of the microwebs is positive. The DNA nanofiber networks and the bactericidal histone constituting the microwebs inhibit the growth of E. coli. Moreover, microwebs work synergistically with colistin sulfate, a common and a last‐resort antibiotic, by targeting the cell envelope of pathogenic bacteria. The synthesis of microwebs enables mechanistic studies not possible with NETs, and it opens new possibilities for constructing biomimetic bacterial microenvironments to better understand and predict physiological pathogen responses.
Microwebs with bacteria trapping and killing functions are designed to mimic neutrophil extracellular traps—an immune defense weapon to fight against invading pathogens. The composition–structure–function relationship of the synthetic structure is discussed, and the collaborative action between microwebs and antibiotics allows better elimination of pathogenic bacteria, Escherichia coli.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30698844</pmid><doi>10.1002/adma.201807436</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4914-8490</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2019-04, Vol.31 (14), p.e1807436-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6467213 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Anti-Bacterial Agents - metabolism Anti-Bacterial Agents - pharmacology antibiotic resistance Antibiotics Antiinfectives and antibacterials bacteria E. coli biomimetic materials Biomimetic Materials - metabolism Biomimetic Materials - pharmacology Biomimetics Chemical composition Deoxyribonucleic acid DNA DNA - metabolism DNA nanofiber networks E coli Escherichia coli - cytology Escherichia coli - drug effects Extracellular Traps - metabolism Histones - metabolism Materials science Nanofibers neutrophil extracellular traps Neutrophils Neutrophils - cytology Pathogens Zeta potential |
title | Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimicrobial%20Microwebs%20of%20DNA%E2%80%93Histone%20Inspired%20from%20Neutrophil%20Extracellular%20Traps&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Song,%20Yang&rft.date=2019-04&rft.volume=31&rft.issue=14&rft.spage=e1807436&rft.epage=n/a&rft.pages=e1807436-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201807436&rft_dat=%3Cproquest_pubme%3E2179476231%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2201706213&rft_id=info:pmid/30698844&rfr_iscdi=true |