Discovering New Casein Kinase 1d Inhibitors with an Innovative Molecular Dynamics Enabled Virtual Screening Workflow
The value of including protein flexibility in structure-based drug design (SBDD) is widely documented, and currently, molecular dynamics (MD) simulations represent a powerful tool to investigate protein dynamics. Yet, the inclusion of MD-derived information in pre-existing SBDD workflows is still fa...
Gespeichert in:
Veröffentlicht in: | ACS medicinal chemistry letters 2019-04, Vol.10 (4), p.487-492 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 492 |
---|---|
container_issue | 4 |
container_start_page | 487 |
container_title | ACS medicinal chemistry letters |
container_volume | 10 |
creator | Sciabola, Simone Benedetti, Paolo D’Arrigo, Giulia Torella, Rubben Baroni, Massimo Cruciani, Gabriele Spyrakis, Francesca |
description | The value of including protein flexibility in structure-based drug design (SBDD) is widely documented, and currently, molecular dynamics (MD) simulations represent a powerful tool to investigate protein dynamics. Yet, the inclusion of MD-derived information in pre-existing SBDD workflows is still far from trivial. We recently published an integrated MD-FLAP (Fingerprints for Ligands and Proteins) approach combining MD, clustering and Linear Discriminant Analysis (LDA) for enhancing accuracy, efficacy, and for protein conformational selection in virtual screening (VS) campaigns. Here we prospectively applied the MD-FLAP workflow to discover novel chemotypes inhibiting the Casein Kinase 1 delta (CSNK1D) enzyme. We first obtained a VS model able to separate active from inactive compounds, with a global AUC of 0.9 and a partial ROC enrichment at 0.5% of 0.18, and use it to mine the internal Pfizer screening database. Seven active molecules sharing a phenyl-indazole scaffold, not yet reported among CSNK1D inhibitors, were found. The most potent inhibitor showed an IC50 of 134 nM. |
doi_str_mv | 10.1021/acsmedchemlett.8b00523 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6466522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211324223</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3723-94ff7eea81d2e7964d9efa1b04491fd09e4e36ba890396bd75ae12d6978d60783</originalsourceid><addsrcrecordid>eNqFkV9vFCEUxYnR2Fr9Cg2PvmwFhoHhxcRsa9tY7UP980iY4U6XykAFZjf99rLZtWmffOKGe-4P7jkIHVNyQgmjH8yQJ7DDCiYPpZx0PSEta16gQ6p4t2g72b58Uh-gNznfESKUlOQ1OmiIUkJ2_BCVU5eHuIbkwi3-Bhu8NBlcwF9cqAWmFl-GletdiSnjjSsrbEK9CnFtilsD_ho9DLM3CZ8-BDO5IeOzYHoPFv90qczG45shAYQt_1dMv0cfN2_Rq9H4DO_25xH68fns-_JicXV9frn8dLUwjWTNQvFxlACmo5aBVIJbBaOhPeFc0dESBRwa0ZtOkUaJ3srWAGW2LtlZQWTXHKGPO-793G_dglCS8fo-ucmkBx2N0887wa30bVxrwYVoGauA93tAin9myEVP1S7w3gSIc9aMUdowXpVVKnbSIcWcE4yPz1Cit5Hp55HpfWR18PjpJx_H_mVUBWwnqAB9F-cUqmf_o_4FuwmrFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211324223</pqid></control><display><type>article</type><title>Discovering New Casein Kinase 1d Inhibitors with an Innovative Molecular Dynamics Enabled Virtual Screening Workflow</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>American Chemical Society Journals</source><creator>Sciabola, Simone ; Benedetti, Paolo ; D’Arrigo, Giulia ; Torella, Rubben ; Baroni, Massimo ; Cruciani, Gabriele ; Spyrakis, Francesca</creator><creatorcontrib>Sciabola, Simone ; Benedetti, Paolo ; D’Arrigo, Giulia ; Torella, Rubben ; Baroni, Massimo ; Cruciani, Gabriele ; Spyrakis, Francesca</creatorcontrib><description>The value of including protein flexibility in structure-based drug design (SBDD) is widely documented, and currently, molecular dynamics (MD) simulations represent a powerful tool to investigate protein dynamics. Yet, the inclusion of MD-derived information in pre-existing SBDD workflows is still far from trivial. We recently published an integrated MD-FLAP (Fingerprints for Ligands and Proteins) approach combining MD, clustering and Linear Discriminant Analysis (LDA) for enhancing accuracy, efficacy, and for protein conformational selection in virtual screening (VS) campaigns. Here we prospectively applied the MD-FLAP workflow to discover novel chemotypes inhibiting the Casein Kinase 1 delta (CSNK1D) enzyme. We first obtained a VS model able to separate active from inactive compounds, with a global AUC of 0.9 and a partial ROC enrichment at 0.5% of 0.18, and use it to mine the internal Pfizer screening database. Seven active molecules sharing a phenyl-indazole scaffold, not yet reported among CSNK1D inhibitors, were found. The most potent inhibitor showed an IC50 of 134 nM.</description><identifier>ISSN: 1948-5875</identifier><identifier>EISSN: 1948-5875</identifier><identifier>DOI: 10.1021/acsmedchemlett.8b00523</identifier><identifier>PMID: 30996784</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Letter</subject><ispartof>ACS medicinal chemistry letters, 2019-04, Vol.10 (4), p.487-492</ispartof><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3723-94ff7eea81d2e7964d9efa1b04491fd09e4e36ba890396bd75ae12d6978d60783</citedby><cites>FETCH-LOGICAL-a3723-94ff7eea81d2e7964d9efa1b04491fd09e4e36ba890396bd75ae12d6978d60783</cites><orcidid>0000-0002-4162-8692 ; 0000-0001-7985-1753 ; 0000-0002-4016-227X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsmedchemlett.8b00523$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsmedchemlett.8b00523$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,2752,27053,27901,27902,53766,53768,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30996784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sciabola, Simone</creatorcontrib><creatorcontrib>Benedetti, Paolo</creatorcontrib><creatorcontrib>D’Arrigo, Giulia</creatorcontrib><creatorcontrib>Torella, Rubben</creatorcontrib><creatorcontrib>Baroni, Massimo</creatorcontrib><creatorcontrib>Cruciani, Gabriele</creatorcontrib><creatorcontrib>Spyrakis, Francesca</creatorcontrib><title>Discovering New Casein Kinase 1d Inhibitors with an Innovative Molecular Dynamics Enabled Virtual Screening Workflow</title><title>ACS medicinal chemistry letters</title><addtitle>ACS Med. Chem. Lett</addtitle><description>The value of including protein flexibility in structure-based drug design (SBDD) is widely documented, and currently, molecular dynamics (MD) simulations represent a powerful tool to investigate protein dynamics. Yet, the inclusion of MD-derived information in pre-existing SBDD workflows is still far from trivial. We recently published an integrated MD-FLAP (Fingerprints for Ligands and Proteins) approach combining MD, clustering and Linear Discriminant Analysis (LDA) for enhancing accuracy, efficacy, and for protein conformational selection in virtual screening (VS) campaigns. Here we prospectively applied the MD-FLAP workflow to discover novel chemotypes inhibiting the Casein Kinase 1 delta (CSNK1D) enzyme. We first obtained a VS model able to separate active from inactive compounds, with a global AUC of 0.9 and a partial ROC enrichment at 0.5% of 0.18, and use it to mine the internal Pfizer screening database. Seven active molecules sharing a phenyl-indazole scaffold, not yet reported among CSNK1D inhibitors, were found. The most potent inhibitor showed an IC50 of 134 nM.</description><subject>Letter</subject><issn>1948-5875</issn><issn>1948-5875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkV9vFCEUxYnR2Fr9Cg2PvmwFhoHhxcRsa9tY7UP980iY4U6XykAFZjf99rLZtWmffOKGe-4P7jkIHVNyQgmjH8yQJ7DDCiYPpZx0PSEta16gQ6p4t2g72b58Uh-gNznfESKUlOQ1OmiIUkJ2_BCVU5eHuIbkwi3-Bhu8NBlcwF9cqAWmFl-GletdiSnjjSsrbEK9CnFtilsD_ho9DLM3CZ8-BDO5IeOzYHoPFv90qczG45shAYQt_1dMv0cfN2_Rq9H4DO_25xH68fns-_JicXV9frn8dLUwjWTNQvFxlACmo5aBVIJbBaOhPeFc0dESBRwa0ZtOkUaJ3srWAGW2LtlZQWTXHKGPO-793G_dglCS8fo-ucmkBx2N0887wa30bVxrwYVoGauA93tAin9myEVP1S7w3gSIc9aMUdowXpVVKnbSIcWcE4yPz1Cit5Hp55HpfWR18PjpJx_H_mVUBWwnqAB9F-cUqmf_o_4FuwmrFg</recordid><startdate>20190411</startdate><enddate>20190411</enddate><creator>Sciabola, Simone</creator><creator>Benedetti, Paolo</creator><creator>D’Arrigo, Giulia</creator><creator>Torella, Rubben</creator><creator>Baroni, Massimo</creator><creator>Cruciani, Gabriele</creator><creator>Spyrakis, Francesca</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4162-8692</orcidid><orcidid>https://orcid.org/0000-0001-7985-1753</orcidid><orcidid>https://orcid.org/0000-0002-4016-227X</orcidid></search><sort><creationdate>20190411</creationdate><title>Discovering New Casein Kinase 1d Inhibitors with an Innovative Molecular Dynamics Enabled Virtual Screening Workflow</title><author>Sciabola, Simone ; Benedetti, Paolo ; D’Arrigo, Giulia ; Torella, Rubben ; Baroni, Massimo ; Cruciani, Gabriele ; Spyrakis, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3723-94ff7eea81d2e7964d9efa1b04491fd09e4e36ba890396bd75ae12d6978d60783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Letter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sciabola, Simone</creatorcontrib><creatorcontrib>Benedetti, Paolo</creatorcontrib><creatorcontrib>D’Arrigo, Giulia</creatorcontrib><creatorcontrib>Torella, Rubben</creatorcontrib><creatorcontrib>Baroni, Massimo</creatorcontrib><creatorcontrib>Cruciani, Gabriele</creatorcontrib><creatorcontrib>Spyrakis, Francesca</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS medicinal chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sciabola, Simone</au><au>Benedetti, Paolo</au><au>D’Arrigo, Giulia</au><au>Torella, Rubben</au><au>Baroni, Massimo</au><au>Cruciani, Gabriele</au><au>Spyrakis, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering New Casein Kinase 1d Inhibitors with an Innovative Molecular Dynamics Enabled Virtual Screening Workflow</atitle><jtitle>ACS medicinal chemistry letters</jtitle><addtitle>ACS Med. Chem. Lett</addtitle><date>2019-04-11</date><risdate>2019</risdate><volume>10</volume><issue>4</issue><spage>487</spage><epage>492</epage><pages>487-492</pages><issn>1948-5875</issn><eissn>1948-5875</eissn><abstract>The value of including protein flexibility in structure-based drug design (SBDD) is widely documented, and currently, molecular dynamics (MD) simulations represent a powerful tool to investigate protein dynamics. Yet, the inclusion of MD-derived information in pre-existing SBDD workflows is still far from trivial. We recently published an integrated MD-FLAP (Fingerprints for Ligands and Proteins) approach combining MD, clustering and Linear Discriminant Analysis (LDA) for enhancing accuracy, efficacy, and for protein conformational selection in virtual screening (VS) campaigns. Here we prospectively applied the MD-FLAP workflow to discover novel chemotypes inhibiting the Casein Kinase 1 delta (CSNK1D) enzyme. We first obtained a VS model able to separate active from inactive compounds, with a global AUC of 0.9 and a partial ROC enrichment at 0.5% of 0.18, and use it to mine the internal Pfizer screening database. Seven active molecules sharing a phenyl-indazole scaffold, not yet reported among CSNK1D inhibitors, were found. The most potent inhibitor showed an IC50 of 134 nM.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30996784</pmid><doi>10.1021/acsmedchemlett.8b00523</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4162-8692</orcidid><orcidid>https://orcid.org/0000-0001-7985-1753</orcidid><orcidid>https://orcid.org/0000-0002-4016-227X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-5875 |
ispartof | ACS medicinal chemistry letters, 2019-04, Vol.10 (4), p.487-492 |
issn | 1948-5875 1948-5875 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6466522 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; American Chemical Society Journals |
subjects | Letter |
title | Discovering New Casein Kinase 1d Inhibitors with an Innovative Molecular Dynamics Enabled Virtual Screening Workflow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20New%20Casein%20Kinase%201d%20Inhibitors%20with%20an%20Innovative%20Molecular%20Dynamics%20Enabled%20Virtual%20Screening%20Workflow&rft.jtitle=ACS%20medicinal%20chemistry%20letters&rft.au=Sciabola,%20Simone&rft.date=2019-04-11&rft.volume=10&rft.issue=4&rft.spage=487&rft.epage=492&rft.pages=487-492&rft.issn=1948-5875&rft.eissn=1948-5875&rft_id=info:doi/10.1021/acsmedchemlett.8b00523&rft_dat=%3Cproquest_pubme%3E2211324223%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211324223&rft_id=info:pmid/30996784&rfr_iscdi=true |