Unveiling novel targets of paclitaxel resistance by single molecule long-read RNA sequencing in breast cancer

RNA sequencing has become one of the most common technology to study transcriptomes in cancer, whereas its length limits its application on alternative splicing (AS) events and novel isoforms. Firstly, we applied single molecule long-read RNA sequencing (Iso-seq) and de novo assembly with short-read...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-04, Vol.9 (1), p.6032, Article 6032
Hauptverfasser: Lian, Bi, Hu, Xin, Shao, Zhi-ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RNA sequencing has become one of the most common technology to study transcriptomes in cancer, whereas its length limits its application on alternative splicing (AS) events and novel isoforms. Firstly, we applied single molecule long-read RNA sequencing (Iso-seq) and de novo assembly with short-read RNA sequencing (RNA-seq) in both wild type (231-WT) and paclitaxel resistant type (231-PTX) of human breast cancer cell MDA-MBA-231. The two sequencing technology provide both the accurate transcript sequences and the deep transcript coverage. Then we combined shor-read and long-read RNA-seq to analyze alternative events and novel isoforms. Last but not the least, we selected BAK1 as our candidate target to verify our analysis. Our results implied that improved characterization of cancer genomic function may require the application of the single molecule long-read RNA sequencing to get the deeper and more precise view to transcriptional level. Our results imply that improved characterization of cancer genomic function may require the application of the single molecule long-read RNA sequencing to get the deeper and more precise view to transcriptional level.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-42184-z