Facile synthesis of ternary graphene nanocomposites with doped metal oxide and conductive polymers as electrode materials for high performance supercapacitors

Supercapacitors (SCs) due to their high energy density, fast charge storage and energy transfer, long charge discharge curves and low costs are very attractive for designing new generation of energy storage devices. In this work we present a simple and scalable synthetic approach to engineer ternary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-04, Vol.9 (1), p.5974-5974, Article 5974
Hauptverfasser: Ishaq, Saira, Moussa, Mahmoud, Kanwal, Farah, Ehsan, Muhammad, Saleem, Muhammad, Van, Truc Ngo, Losic, Dusan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5974
container_issue 1
container_start_page 5974
container_title Scientific reports
container_volume 9
creator Ishaq, Saira
Moussa, Mahmoud
Kanwal, Farah
Ehsan, Muhammad
Saleem, Muhammad
Van, Truc Ngo
Losic, Dusan
description Supercapacitors (SCs) due to their high energy density, fast charge storage and energy transfer, long charge discharge curves and low costs are very attractive for designing new generation of energy storage devices. In this work we present a simple and scalable synthetic approach to engineer ternary composite as electrode material based on combination of graphene with doped metal oxides (iron oxide) and conductive polymer (polypyrrole) with aims to achieve supercapacitors with very high gravimetric and areal capacitances. In the first step a binary composite with graphene mixed with doped iron oxide (rGO/MeFe 2 O 4 ) (Me = Mn, Ni) was synthesized using new single step process with NaOH acting as a coprecipitation and GO reducing agent. This rGO/MnFe 2 O 4 composite electrode showed gravimetric capacitance of 147 Fg −1 and areal capacitance of 232 mFcm −2 at scan rate of 5 mVs −1 . In the final step a conductive polypyrrole was included to prepare a ternary composite graphene/metal doped iron oxide/polypyrrole (rGO/MnFe 2 O 4 /Ppy) electrode. Ternary composite electrode showed significantly improved gravimetric capacitance and areal capacitance of 232 Fg −1 and 395 mFcm −2 respectively indicating synergistic impact of Ppy additives. The method is promising to fabricate advanced electrode materials for high performing supercapacitors combining graphene, doped iron oxide and conductive polymers.
doi_str_mv 10.1038/s41598-019-41939-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6461681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2208721473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-3dd43d7074616e29cb450a6c83b56c871d80010e047c2bb33541cd3883774983</originalsourceid><addsrcrecordid>eNp9kk1vFiEQxzdGY5vaL-DBkHjxssrbLnAxMY3VJk289E5YmOdZml1Yga3ul_GzSvvUtnqQAwyZ3_xnGKZpXhP8nmAmP2ROOiVbTFTLiWKq3Z41xxTzrqWM0udP7KPmNOdrXFdHVWVfNkcMK6EUYcfNr3Nj_QQob6GMkH1GcYcKpGDShvbJLCMEQMGEaOO8xOwLZPTDlxG5uIBDMxQzofjTO0AmOGRjcKst_gbQEqdthpSRyQgmsCXFCs2mqnszZbSLCY1-P6IFUrVnE2ytY603a5ZaVYkpv2pe7CoLp_fnSXN1_vnq7Gt7-e3Lxdmny9Z2hJWWOceZE1jwnvRAlR14h01vJRu6ugviJMYEA-bC0mFgrOPEOiYlE4IryU6ajwfZZR1mcBZCSWbSS_Jz7YOOxuu_PcGPeh9vdH-bUJIq8O5eIMXvK-SiZ58tTJMJENesKcWqJ1hSUdG3_6DXca39nu4oKSjhglWKHiibYs4Jdg_FEKxvB0AfBkDXAdB3A6C3GvTm6TMeQv58dwXYAcjVFfaQHnP_R_Y36RnAgg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2208721473</pqid></control><display><type>article</type><title>Facile synthesis of ternary graphene nanocomposites with doped metal oxide and conductive polymers as electrode materials for high performance supercapacitors</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ishaq, Saira ; Moussa, Mahmoud ; Kanwal, Farah ; Ehsan, Muhammad ; Saleem, Muhammad ; Van, Truc Ngo ; Losic, Dusan</creator><creatorcontrib>Ishaq, Saira ; Moussa, Mahmoud ; Kanwal, Farah ; Ehsan, Muhammad ; Saleem, Muhammad ; Van, Truc Ngo ; Losic, Dusan</creatorcontrib><description>Supercapacitors (SCs) due to their high energy density, fast charge storage and energy transfer, long charge discharge curves and low costs are very attractive for designing new generation of energy storage devices. In this work we present a simple and scalable synthetic approach to engineer ternary composite as electrode material based on combination of graphene with doped metal oxides (iron oxide) and conductive polymer (polypyrrole) with aims to achieve supercapacitors with very high gravimetric and areal capacitances. In the first step a binary composite with graphene mixed with doped iron oxide (rGO/MeFe 2 O 4 ) (Me = Mn, Ni) was synthesized using new single step process with NaOH acting as a coprecipitation and GO reducing agent. This rGO/MnFe 2 O 4 composite electrode showed gravimetric capacitance of 147 Fg −1 and areal capacitance of 232 mFcm −2 at scan rate of 5 mVs −1 . In the final step a conductive polypyrrole was included to prepare a ternary composite graphene/metal doped iron oxide/polypyrrole (rGO/MnFe 2 O 4 /Ppy) electrode. Ternary composite electrode showed significantly improved gravimetric capacitance and areal capacitance of 232 Fg −1 and 395 mFcm −2 respectively indicating synergistic impact of Ppy additives. The method is promising to fabricate advanced electrode materials for high performing supercapacitors combining graphene, doped iron oxide and conductive polymers.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-41939-y</identifier><identifier>PMID: 30979913</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/551 ; 639/925/357/1018 ; Capacitance ; Composite materials ; Electrodes ; Energy charge ; Energy storage ; Energy transfer ; Humanities and Social Sciences ; Iron oxides ; multidisciplinary ; Nanocomposites ; Oxides ; Polymers ; Polypyrroles ; Product design ; Science ; Science (multidisciplinary) ; Sodium hydroxide</subject><ispartof>Scientific reports, 2019-04, Vol.9 (1), p.5974-5974, Article 5974</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-3dd43d7074616e29cb450a6c83b56c871d80010e047c2bb33541cd3883774983</citedby><cites>FETCH-LOGICAL-c513t-3dd43d7074616e29cb450a6c83b56c871d80010e047c2bb33541cd3883774983</cites><orcidid>0000-0002-1930-072X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461681/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461681/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30979913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishaq, Saira</creatorcontrib><creatorcontrib>Moussa, Mahmoud</creatorcontrib><creatorcontrib>Kanwal, Farah</creatorcontrib><creatorcontrib>Ehsan, Muhammad</creatorcontrib><creatorcontrib>Saleem, Muhammad</creatorcontrib><creatorcontrib>Van, Truc Ngo</creatorcontrib><creatorcontrib>Losic, Dusan</creatorcontrib><title>Facile synthesis of ternary graphene nanocomposites with doped metal oxide and conductive polymers as electrode materials for high performance supercapacitors</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Supercapacitors (SCs) due to their high energy density, fast charge storage and energy transfer, long charge discharge curves and low costs are very attractive for designing new generation of energy storage devices. In this work we present a simple and scalable synthetic approach to engineer ternary composite as electrode material based on combination of graphene with doped metal oxides (iron oxide) and conductive polymer (polypyrrole) with aims to achieve supercapacitors with very high gravimetric and areal capacitances. In the first step a binary composite with graphene mixed with doped iron oxide (rGO/MeFe 2 O 4 ) (Me = Mn, Ni) was synthesized using new single step process with NaOH acting as a coprecipitation and GO reducing agent. This rGO/MnFe 2 O 4 composite electrode showed gravimetric capacitance of 147 Fg −1 and areal capacitance of 232 mFcm −2 at scan rate of 5 mVs −1 . In the final step a conductive polypyrrole was included to prepare a ternary composite graphene/metal doped iron oxide/polypyrrole (rGO/MnFe 2 O 4 /Ppy) electrode. Ternary composite electrode showed significantly improved gravimetric capacitance and areal capacitance of 232 Fg −1 and 395 mFcm −2 respectively indicating synergistic impact of Ppy additives. The method is promising to fabricate advanced electrode materials for high performing supercapacitors combining graphene, doped iron oxide and conductive polymers.</description><subject>639/301/357/551</subject><subject>639/925/357/1018</subject><subject>Capacitance</subject><subject>Composite materials</subject><subject>Electrodes</subject><subject>Energy charge</subject><subject>Energy storage</subject><subject>Energy transfer</subject><subject>Humanities and Social Sciences</subject><subject>Iron oxides</subject><subject>multidisciplinary</subject><subject>Nanocomposites</subject><subject>Oxides</subject><subject>Polymers</subject><subject>Polypyrroles</subject><subject>Product design</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium hydroxide</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk1vFiEQxzdGY5vaL-DBkHjxssrbLnAxMY3VJk289E5YmOdZml1Yga3ul_GzSvvUtnqQAwyZ3_xnGKZpXhP8nmAmP2ROOiVbTFTLiWKq3Z41xxTzrqWM0udP7KPmNOdrXFdHVWVfNkcMK6EUYcfNr3Nj_QQob6GMkH1GcYcKpGDShvbJLCMEQMGEaOO8xOwLZPTDlxG5uIBDMxQzofjTO0AmOGRjcKst_gbQEqdthpSRyQgmsCXFCs2mqnszZbSLCY1-P6IFUrVnE2ytY603a5ZaVYkpv2pe7CoLp_fnSXN1_vnq7Gt7-e3Lxdmny9Z2hJWWOceZE1jwnvRAlR14h01vJRu6ugviJMYEA-bC0mFgrOPEOiYlE4IryU6ajwfZZR1mcBZCSWbSS_Jz7YOOxuu_PcGPeh9vdH-bUJIq8O5eIMXvK-SiZ58tTJMJENesKcWqJ1hSUdG3_6DXca39nu4oKSjhglWKHiibYs4Jdg_FEKxvB0AfBkDXAdB3A6C3GvTm6TMeQv58dwXYAcjVFfaQHnP_R_Y36RnAgg</recordid><startdate>20190412</startdate><enddate>20190412</enddate><creator>Ishaq, Saira</creator><creator>Moussa, Mahmoud</creator><creator>Kanwal, Farah</creator><creator>Ehsan, Muhammad</creator><creator>Saleem, Muhammad</creator><creator>Van, Truc Ngo</creator><creator>Losic, Dusan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1930-072X</orcidid></search><sort><creationdate>20190412</creationdate><title>Facile synthesis of ternary graphene nanocomposites with doped metal oxide and conductive polymers as electrode materials for high performance supercapacitors</title><author>Ishaq, Saira ; Moussa, Mahmoud ; Kanwal, Farah ; Ehsan, Muhammad ; Saleem, Muhammad ; Van, Truc Ngo ; Losic, Dusan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-3dd43d7074616e29cb450a6c83b56c871d80010e047c2bb33541cd3883774983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/357/551</topic><topic>639/925/357/1018</topic><topic>Capacitance</topic><topic>Composite materials</topic><topic>Electrodes</topic><topic>Energy charge</topic><topic>Energy storage</topic><topic>Energy transfer</topic><topic>Humanities and Social Sciences</topic><topic>Iron oxides</topic><topic>multidisciplinary</topic><topic>Nanocomposites</topic><topic>Oxides</topic><topic>Polymers</topic><topic>Polypyrroles</topic><topic>Product design</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium hydroxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishaq, Saira</creatorcontrib><creatorcontrib>Moussa, Mahmoud</creatorcontrib><creatorcontrib>Kanwal, Farah</creatorcontrib><creatorcontrib>Ehsan, Muhammad</creatorcontrib><creatorcontrib>Saleem, Muhammad</creatorcontrib><creatorcontrib>Van, Truc Ngo</creatorcontrib><creatorcontrib>Losic, Dusan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishaq, Saira</au><au>Moussa, Mahmoud</au><au>Kanwal, Farah</au><au>Ehsan, Muhammad</au><au>Saleem, Muhammad</au><au>Van, Truc Ngo</au><au>Losic, Dusan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile synthesis of ternary graphene nanocomposites with doped metal oxide and conductive polymers as electrode materials for high performance supercapacitors</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-04-12</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>5974</spage><epage>5974</epage><pages>5974-5974</pages><artnum>5974</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Supercapacitors (SCs) due to their high energy density, fast charge storage and energy transfer, long charge discharge curves and low costs are very attractive for designing new generation of energy storage devices. In this work we present a simple and scalable synthetic approach to engineer ternary composite as electrode material based on combination of graphene with doped metal oxides (iron oxide) and conductive polymer (polypyrrole) with aims to achieve supercapacitors with very high gravimetric and areal capacitances. In the first step a binary composite with graphene mixed with doped iron oxide (rGO/MeFe 2 O 4 ) (Me = Mn, Ni) was synthesized using new single step process with NaOH acting as a coprecipitation and GO reducing agent. This rGO/MnFe 2 O 4 composite electrode showed gravimetric capacitance of 147 Fg −1 and areal capacitance of 232 mFcm −2 at scan rate of 5 mVs −1 . In the final step a conductive polypyrrole was included to prepare a ternary composite graphene/metal doped iron oxide/polypyrrole (rGO/MnFe 2 O 4 /Ppy) electrode. Ternary composite electrode showed significantly improved gravimetric capacitance and areal capacitance of 232 Fg −1 and 395 mFcm −2 respectively indicating synergistic impact of Ppy additives. The method is promising to fabricate advanced electrode materials for high performing supercapacitors combining graphene, doped iron oxide and conductive polymers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30979913</pmid><doi>10.1038/s41598-019-41939-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1930-072X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-04, Vol.9 (1), p.5974-5974, Article 5974
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6461681
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/301/357/551
639/925/357/1018
Capacitance
Composite materials
Electrodes
Energy charge
Energy storage
Energy transfer
Humanities and Social Sciences
Iron oxides
multidisciplinary
Nanocomposites
Oxides
Polymers
Polypyrroles
Product design
Science
Science (multidisciplinary)
Sodium hydroxide
title Facile synthesis of ternary graphene nanocomposites with doped metal oxide and conductive polymers as electrode materials for high performance supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20synthesis%20of%20ternary%20graphene%20nanocomposites%20with%20doped%20metal%20oxide%20and%20conductive%20polymers%20as%20electrode%20materials%20for%20high%20performance%20supercapacitors&rft.jtitle=Scientific%20reports&rft.au=Ishaq,%20Saira&rft.date=2019-04-12&rft.volume=9&rft.issue=1&rft.spage=5974&rft.epage=5974&rft.pages=5974-5974&rft.artnum=5974&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-41939-y&rft_dat=%3Cproquest_pubme%3E2208721473%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2208721473&rft_id=info:pmid/30979913&rfr_iscdi=true