Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis

Epithelial barrier loss is a driver of intestinal and systemic diseases. Myosin light chain kinase (MLCK) is a key effector of barrier dysfunction and a potential therapeutic target, but enzymatic inhibition has unacceptable toxicity. Here, we show that a unique domain within the MLCK splice variant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2019-04, Vol.25 (4), p.690-700
Hauptverfasser: Graham, W. Vallen, He, Weiqi, Marchiando, Amanda M., Zha, Juanmin, Singh, Gurminder, Li, Hua-Shan, Biswas, Amlan, Ong, Ma. Lora Drizella M., Jiang, Zhi-Hui, Choi, Wangsun, Zuccola, Harmon, Wang, Yitang, Griffith, James, Wu, Jingshing, Rosenberg, Harry J., Wang, Yingmin, Snapper, Scott B., Ostrov, David, Meredith, Stephen C., Miller, Lawrence W., Turner, Jerrold R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 700
container_issue 4
container_start_page 690
container_title Nature medicine
container_volume 25
creator Graham, W. Vallen
He, Weiqi
Marchiando, Amanda M.
Zha, Juanmin
Singh, Gurminder
Li, Hua-Shan
Biswas, Amlan
Ong, Ma. Lora Drizella M.
Jiang, Zhi-Hui
Choi, Wangsun
Zuccola, Harmon
Wang, Yitang
Griffith, James
Wu, Jingshing
Rosenberg, Harry J.
Wang, Yingmin
Snapper, Scott B.
Ostrov, David
Meredith, Stephen C.
Miller, Lawrence W.
Turner, Jerrold R.
description Epithelial barrier loss is a driver of intestinal and systemic diseases. Myosin light chain kinase (MLCK) is a key effector of barrier dysfunction and a potential therapeutic target, but enzymatic inhibition has unacceptable toxicity. Here, we show that a unique domain within the MLCK splice variant MLCK1 directs perijunctional actomyosin ring (PAMR) recruitment. Using the domain structure and multiple screens, we identify a domain-binding small molecule (divertin) that blocks MLCK1 recruitment without inhibiting enzymatic function. Divertin blocks acute, tumor necrosis factor (TNF)-induced MLCK1 recruitment as well as downstream myosin light chain (MLC) phosphorylation, barrier loss, and diarrhea in vitro and in vivo. Divertin corrects barrier dysfunction and prevents disease development and progression in experimental inflammatory bowel disease. Beyond applications of divertin in gastrointestinal disease, this general approach to enzymatic inhibition by preventing access to specific subcellular sites provides a new paradigm for safely and precisely targeting individual properties of enzymes with multiple functions. A small molecule that restores the integrity of the intestinal barrier provides a novel therapeutic strategy for inflammatory bowel diseases.
doi_str_mv 10.1038/s41591-019-0393-7
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6461392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A581338873</galeid><sourcerecordid>A581338873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c674t-b8a8fcd875509b81f927b55cfd27ec1695b6941418aec8de1e3ac0bcaed863ff3</originalsourceid><addsrcrecordid>eNqNkl2L1TAQhoMo7nr0B3gjBUH0omvSNE1yIywHPw4eWVg_8C6k6bQnS9qsSbvovzflrLtbOYLkIkPmmZfMzIvQU4JPCKbidSwJkyTHROaYSprze-iYsLLKCcff76cYc5ELyaoj9CjGC4wxxUw-REcUS1qxsjxG55thDNqAc5PTIfu0XX8kWWOvIETrhyzAHEHMah2ChZA5H2M2-pSIow-Q9ZPxUbts53vwcdTRxsfoQatdhCfX9wp9fff2y_pDvj17v1mfbnNT8XLMa6FFaxrBGcOyFqSVBa8ZM21TcDCkkqyuZElKIjQY0QABqg2ujYZGVLRt6Qq92eteTnUPjYG5E6cug-11-KW8tmqZGexOdf5KVWVFqCySwMtrgeB_TKkh1ds4j0IP4KeoigIXRDKeRrtCz_9CL_wUhtTeTFFSMMzwLdVpB8oOrZ9nO4uqUyYIpUJwmqj8ANXBAOmTfoDWpucFf3KAT6eB3pqDBa8WBYkZ4efY6SlGtfl8_v_s2bcl--IOuwPtxl30bhqTU-ISJHvQhGSXAO3NUghWs3PV3rkqOVfNzlU81Ty7u82bij9WTUCxB2JKDR2E2xX8W_U36Hf2lw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203125050</pqid></control><display><type>article</type><title>Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Graham, W. Vallen ; He, Weiqi ; Marchiando, Amanda M. ; Zha, Juanmin ; Singh, Gurminder ; Li, Hua-Shan ; Biswas, Amlan ; Ong, Ma. Lora Drizella M. ; Jiang, Zhi-Hui ; Choi, Wangsun ; Zuccola, Harmon ; Wang, Yitang ; Griffith, James ; Wu, Jingshing ; Rosenberg, Harry J. ; Wang, Yingmin ; Snapper, Scott B. ; Ostrov, David ; Meredith, Stephen C. ; Miller, Lawrence W. ; Turner, Jerrold R.</creator><creatorcontrib>Graham, W. Vallen ; He, Weiqi ; Marchiando, Amanda M. ; Zha, Juanmin ; Singh, Gurminder ; Li, Hua-Shan ; Biswas, Amlan ; Ong, Ma. Lora Drizella M. ; Jiang, Zhi-Hui ; Choi, Wangsun ; Zuccola, Harmon ; Wang, Yitang ; Griffith, James ; Wu, Jingshing ; Rosenberg, Harry J. ; Wang, Yingmin ; Snapper, Scott B. ; Ostrov, David ; Meredith, Stephen C. ; Miller, Lawrence W. ; Turner, Jerrold R.</creatorcontrib><description>Epithelial barrier loss is a driver of intestinal and systemic diseases. Myosin light chain kinase (MLCK) is a key effector of barrier dysfunction and a potential therapeutic target, but enzymatic inhibition has unacceptable toxicity. Here, we show that a unique domain within the MLCK splice variant MLCK1 directs perijunctional actomyosin ring (PAMR) recruitment. Using the domain structure and multiple screens, we identify a domain-binding small molecule (divertin) that blocks MLCK1 recruitment without inhibiting enzymatic function. Divertin blocks acute, tumor necrosis factor (TNF)-induced MLCK1 recruitment as well as downstream myosin light chain (MLC) phosphorylation, barrier loss, and diarrhea in vitro and in vivo. Divertin corrects barrier dysfunction and prevents disease development and progression in experimental inflammatory bowel disease. Beyond applications of divertin in gastrointestinal disease, this general approach to enzymatic inhibition by preventing access to specific subcellular sites provides a new paradigm for safely and precisely targeting individual properties of enzymes with multiple functions. A small molecule that restores the integrity of the intestinal barrier provides a novel therapeutic strategy for inflammatory bowel diseases.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-019-0393-7</identifier><identifier>PMID: 30936544</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/250/347 ; 631/80/304 ; Actomyosin ; Actomyosin - metabolism ; Alternative splicing ; Animals ; Biocompatibility ; Biomedical and Life Sciences ; Biomedicine ; Caco-2 Cells ; Cancer Research ; Care and treatment ; Chains ; Chronic Disease ; Development and progression ; Diarrhea ; Disease ; Enzymes ; Gastrointestinal diseases ; Homeostasis ; Homeostasis - drug effects ; Humans ; Infectious Diseases ; Inflammation - pathology ; Inflammatory bowel diseases ; Inflammatory Bowel Diseases - pathology ; Intestinal Mucosa - drug effects ; Intestinal Mucosa - metabolism ; Intestine ; Intracellular Space - enzymology ; Jejunum - drug effects ; Jejunum - metabolism ; Jejunum - pathology ; Kinases ; Metabolic Diseases ; Mice ; Molecular Medicine ; Mucosa ; Muscle proteins ; Myosin ; Myosin Light Chains - metabolism ; Myosin-light-chain kinase ; Myosin-Light-Chain Kinase - chemistry ; Myosin-Light-Chain Kinase - metabolism ; Necrosis ; Neurosciences ; Novels ; Phosphorylation ; Phosphorylation - drug effects ; Protein Domains ; Recruitment ; Screens ; Small Molecule Libraries - pharmacology ; Therapeutic applications ; Tight Junctions - drug effects ; Tight Junctions - metabolism ; Toxicity ; Tumor necrosis factor ; Tumor Necrosis Factor-alpha - pharmacology ; Tumor necrosis factor-TNF ; Tumors</subject><ispartof>Nature medicine, 2019-04, Vol.25 (4), p.690-700</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c674t-b8a8fcd875509b81f927b55cfd27ec1695b6941418aec8de1e3ac0bcaed863ff3</citedby><cites>FETCH-LOGICAL-c674t-b8a8fcd875509b81f927b55cfd27ec1695b6941418aec8de1e3ac0bcaed863ff3</cites><orcidid>0000-0003-3137-8420 ; 0000-0003-0627-9455 ; 0000-0003-3815-7532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-019-0393-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-019-0393-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30936544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Graham, W. Vallen</creatorcontrib><creatorcontrib>He, Weiqi</creatorcontrib><creatorcontrib>Marchiando, Amanda M.</creatorcontrib><creatorcontrib>Zha, Juanmin</creatorcontrib><creatorcontrib>Singh, Gurminder</creatorcontrib><creatorcontrib>Li, Hua-Shan</creatorcontrib><creatorcontrib>Biswas, Amlan</creatorcontrib><creatorcontrib>Ong, Ma. Lora Drizella M.</creatorcontrib><creatorcontrib>Jiang, Zhi-Hui</creatorcontrib><creatorcontrib>Choi, Wangsun</creatorcontrib><creatorcontrib>Zuccola, Harmon</creatorcontrib><creatorcontrib>Wang, Yitang</creatorcontrib><creatorcontrib>Griffith, James</creatorcontrib><creatorcontrib>Wu, Jingshing</creatorcontrib><creatorcontrib>Rosenberg, Harry J.</creatorcontrib><creatorcontrib>Wang, Yingmin</creatorcontrib><creatorcontrib>Snapper, Scott B.</creatorcontrib><creatorcontrib>Ostrov, David</creatorcontrib><creatorcontrib>Meredith, Stephen C.</creatorcontrib><creatorcontrib>Miller, Lawrence W.</creatorcontrib><creatorcontrib>Turner, Jerrold R.</creatorcontrib><title>Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Epithelial barrier loss is a driver of intestinal and systemic diseases. Myosin light chain kinase (MLCK) is a key effector of barrier dysfunction and a potential therapeutic target, but enzymatic inhibition has unacceptable toxicity. Here, we show that a unique domain within the MLCK splice variant MLCK1 directs perijunctional actomyosin ring (PAMR) recruitment. Using the domain structure and multiple screens, we identify a domain-binding small molecule (divertin) that blocks MLCK1 recruitment without inhibiting enzymatic function. Divertin blocks acute, tumor necrosis factor (TNF)-induced MLCK1 recruitment as well as downstream myosin light chain (MLC) phosphorylation, barrier loss, and diarrhea in vitro and in vivo. Divertin corrects barrier dysfunction and prevents disease development and progression in experimental inflammatory bowel disease. Beyond applications of divertin in gastrointestinal disease, this general approach to enzymatic inhibition by preventing access to specific subcellular sites provides a new paradigm for safely and precisely targeting individual properties of enzymes with multiple functions. A small molecule that restores the integrity of the intestinal barrier provides a novel therapeutic strategy for inflammatory bowel diseases.</description><subject>631/250/347</subject><subject>631/80/304</subject><subject>Actomyosin</subject><subject>Actomyosin - metabolism</subject><subject>Alternative splicing</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Caco-2 Cells</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>Chains</subject><subject>Chronic Disease</subject><subject>Development and progression</subject><subject>Diarrhea</subject><subject>Disease</subject><subject>Enzymes</subject><subject>Gastrointestinal diseases</subject><subject>Homeostasis</subject><subject>Homeostasis - drug effects</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Inflammation - pathology</subject><subject>Inflammatory bowel diseases</subject><subject>Inflammatory Bowel Diseases - pathology</subject><subject>Intestinal Mucosa - drug effects</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestine</subject><subject>Intracellular Space - enzymology</subject><subject>Jejunum - drug effects</subject><subject>Jejunum - metabolism</subject><subject>Jejunum - pathology</subject><subject>Kinases</subject><subject>Metabolic Diseases</subject><subject>Mice</subject><subject>Molecular Medicine</subject><subject>Mucosa</subject><subject>Muscle proteins</subject><subject>Myosin</subject><subject>Myosin Light Chains - metabolism</subject><subject>Myosin-light-chain kinase</subject><subject>Myosin-Light-Chain Kinase - chemistry</subject><subject>Myosin-Light-Chain Kinase - metabolism</subject><subject>Necrosis</subject><subject>Neurosciences</subject><subject>Novels</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Protein Domains</subject><subject>Recruitment</subject><subject>Screens</subject><subject>Small Molecule Libraries - pharmacology</subject><subject>Therapeutic applications</subject><subject>Tight Junctions - drug effects</subject><subject>Tight Junctions - metabolism</subject><subject>Toxicity</subject><subject>Tumor necrosis factor</subject><subject>Tumor Necrosis Factor-alpha - pharmacology</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumors</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl2L1TAQhoMo7nr0B3gjBUH0omvSNE1yIywHPw4eWVg_8C6k6bQnS9qsSbvovzflrLtbOYLkIkPmmZfMzIvQU4JPCKbidSwJkyTHROaYSprze-iYsLLKCcff76cYc5ELyaoj9CjGC4wxxUw-REcUS1qxsjxG55thDNqAc5PTIfu0XX8kWWOvIETrhyzAHEHMah2ChZA5H2M2-pSIow-Q9ZPxUbts53vwcdTRxsfoQatdhCfX9wp9fff2y_pDvj17v1mfbnNT8XLMa6FFaxrBGcOyFqSVBa8ZM21TcDCkkqyuZElKIjQY0QABqg2ujYZGVLRt6Qq92eteTnUPjYG5E6cug-11-KW8tmqZGexOdf5KVWVFqCySwMtrgeB_TKkh1ds4j0IP4KeoigIXRDKeRrtCz_9CL_wUhtTeTFFSMMzwLdVpB8oOrZ9nO4uqUyYIpUJwmqj8ANXBAOmTfoDWpucFf3KAT6eB3pqDBa8WBYkZ4efY6SlGtfl8_v_s2bcl--IOuwPtxl30bhqTU-ISJHvQhGSXAO3NUghWs3PV3rkqOVfNzlU81Ty7u82bij9WTUCxB2JKDR2E2xX8W_U36Hf2lw</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Graham, W. Vallen</creator><creator>He, Weiqi</creator><creator>Marchiando, Amanda M.</creator><creator>Zha, Juanmin</creator><creator>Singh, Gurminder</creator><creator>Li, Hua-Shan</creator><creator>Biswas, Amlan</creator><creator>Ong, Ma. Lora Drizella M.</creator><creator>Jiang, Zhi-Hui</creator><creator>Choi, Wangsun</creator><creator>Zuccola, Harmon</creator><creator>Wang, Yitang</creator><creator>Griffith, James</creator><creator>Wu, Jingshing</creator><creator>Rosenberg, Harry J.</creator><creator>Wang, Yingmin</creator><creator>Snapper, Scott B.</creator><creator>Ostrov, David</creator><creator>Meredith, Stephen C.</creator><creator>Miller, Lawrence W.</creator><creator>Turner, Jerrold R.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3137-8420</orcidid><orcidid>https://orcid.org/0000-0003-0627-9455</orcidid><orcidid>https://orcid.org/0000-0003-3815-7532</orcidid></search><sort><creationdate>20190401</creationdate><title>Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis</title><author>Graham, W. Vallen ; He, Weiqi ; Marchiando, Amanda M. ; Zha, Juanmin ; Singh, Gurminder ; Li, Hua-Shan ; Biswas, Amlan ; Ong, Ma. Lora Drizella M. ; Jiang, Zhi-Hui ; Choi, Wangsun ; Zuccola, Harmon ; Wang, Yitang ; Griffith, James ; Wu, Jingshing ; Rosenberg, Harry J. ; Wang, Yingmin ; Snapper, Scott B. ; Ostrov, David ; Meredith, Stephen C. ; Miller, Lawrence W. ; Turner, Jerrold R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c674t-b8a8fcd875509b81f927b55cfd27ec1695b6941418aec8de1e3ac0bcaed863ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/250/347</topic><topic>631/80/304</topic><topic>Actomyosin</topic><topic>Actomyosin - metabolism</topic><topic>Alternative splicing</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Caco-2 Cells</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>Chains</topic><topic>Chronic Disease</topic><topic>Development and progression</topic><topic>Diarrhea</topic><topic>Disease</topic><topic>Enzymes</topic><topic>Gastrointestinal diseases</topic><topic>Homeostasis</topic><topic>Homeostasis - drug effects</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Inflammation - pathology</topic><topic>Inflammatory bowel diseases</topic><topic>Inflammatory Bowel Diseases - pathology</topic><topic>Intestinal Mucosa - drug effects</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestine</topic><topic>Intracellular Space - enzymology</topic><topic>Jejunum - drug effects</topic><topic>Jejunum - metabolism</topic><topic>Jejunum - pathology</topic><topic>Kinases</topic><topic>Metabolic Diseases</topic><topic>Mice</topic><topic>Molecular Medicine</topic><topic>Mucosa</topic><topic>Muscle proteins</topic><topic>Myosin</topic><topic>Myosin Light Chains - metabolism</topic><topic>Myosin-light-chain kinase</topic><topic>Myosin-Light-Chain Kinase - chemistry</topic><topic>Myosin-Light-Chain Kinase - metabolism</topic><topic>Necrosis</topic><topic>Neurosciences</topic><topic>Novels</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Protein Domains</topic><topic>Recruitment</topic><topic>Screens</topic><topic>Small Molecule Libraries - pharmacology</topic><topic>Therapeutic applications</topic><topic>Tight Junctions - drug effects</topic><topic>Tight Junctions - metabolism</topic><topic>Toxicity</topic><topic>Tumor necrosis factor</topic><topic>Tumor Necrosis Factor-alpha - pharmacology</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graham, W. Vallen</creatorcontrib><creatorcontrib>He, Weiqi</creatorcontrib><creatorcontrib>Marchiando, Amanda M.</creatorcontrib><creatorcontrib>Zha, Juanmin</creatorcontrib><creatorcontrib>Singh, Gurminder</creatorcontrib><creatorcontrib>Li, Hua-Shan</creatorcontrib><creatorcontrib>Biswas, Amlan</creatorcontrib><creatorcontrib>Ong, Ma. Lora Drizella M.</creatorcontrib><creatorcontrib>Jiang, Zhi-Hui</creatorcontrib><creatorcontrib>Choi, Wangsun</creatorcontrib><creatorcontrib>Zuccola, Harmon</creatorcontrib><creatorcontrib>Wang, Yitang</creatorcontrib><creatorcontrib>Griffith, James</creatorcontrib><creatorcontrib>Wu, Jingshing</creatorcontrib><creatorcontrib>Rosenberg, Harry J.</creatorcontrib><creatorcontrib>Wang, Yingmin</creatorcontrib><creatorcontrib>Snapper, Scott B.</creatorcontrib><creatorcontrib>Ostrov, David</creatorcontrib><creatorcontrib>Meredith, Stephen C.</creatorcontrib><creatorcontrib>Miller, Lawrence W.</creatorcontrib><creatorcontrib>Turner, Jerrold R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graham, W. Vallen</au><au>He, Weiqi</au><au>Marchiando, Amanda M.</au><au>Zha, Juanmin</au><au>Singh, Gurminder</au><au>Li, Hua-Shan</au><au>Biswas, Amlan</au><au>Ong, Ma. Lora Drizella M.</au><au>Jiang, Zhi-Hui</au><au>Choi, Wangsun</au><au>Zuccola, Harmon</au><au>Wang, Yitang</au><au>Griffith, James</au><au>Wu, Jingshing</au><au>Rosenberg, Harry J.</au><au>Wang, Yingmin</au><au>Snapper, Scott B.</au><au>Ostrov, David</au><au>Meredith, Stephen C.</au><au>Miller, Lawrence W.</au><au>Turner, Jerrold R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>25</volume><issue>4</issue><spage>690</spage><epage>700</epage><pages>690-700</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Epithelial barrier loss is a driver of intestinal and systemic diseases. Myosin light chain kinase (MLCK) is a key effector of barrier dysfunction and a potential therapeutic target, but enzymatic inhibition has unacceptable toxicity. Here, we show that a unique domain within the MLCK splice variant MLCK1 directs perijunctional actomyosin ring (PAMR) recruitment. Using the domain structure and multiple screens, we identify a domain-binding small molecule (divertin) that blocks MLCK1 recruitment without inhibiting enzymatic function. Divertin blocks acute, tumor necrosis factor (TNF)-induced MLCK1 recruitment as well as downstream myosin light chain (MLC) phosphorylation, barrier loss, and diarrhea in vitro and in vivo. Divertin corrects barrier dysfunction and prevents disease development and progression in experimental inflammatory bowel disease. Beyond applications of divertin in gastrointestinal disease, this general approach to enzymatic inhibition by preventing access to specific subcellular sites provides a new paradigm for safely and precisely targeting individual properties of enzymes with multiple functions. A small molecule that restores the integrity of the intestinal barrier provides a novel therapeutic strategy for inflammatory bowel diseases.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30936544</pmid><doi>10.1038/s41591-019-0393-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3137-8420</orcidid><orcidid>https://orcid.org/0000-0003-0627-9455</orcidid><orcidid>https://orcid.org/0000-0003-3815-7532</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2019-04, Vol.25 (4), p.690-700
issn 1078-8956
1546-170X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6461392
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/250/347
631/80/304
Actomyosin
Actomyosin - metabolism
Alternative splicing
Animals
Biocompatibility
Biomedical and Life Sciences
Biomedicine
Caco-2 Cells
Cancer Research
Care and treatment
Chains
Chronic Disease
Development and progression
Diarrhea
Disease
Enzymes
Gastrointestinal diseases
Homeostasis
Homeostasis - drug effects
Humans
Infectious Diseases
Inflammation - pathology
Inflammatory bowel diseases
Inflammatory Bowel Diseases - pathology
Intestinal Mucosa - drug effects
Intestinal Mucosa - metabolism
Intestine
Intracellular Space - enzymology
Jejunum - drug effects
Jejunum - metabolism
Jejunum - pathology
Kinases
Metabolic Diseases
Mice
Molecular Medicine
Mucosa
Muscle proteins
Myosin
Myosin Light Chains - metabolism
Myosin-light-chain kinase
Myosin-Light-Chain Kinase - chemistry
Myosin-Light-Chain Kinase - metabolism
Necrosis
Neurosciences
Novels
Phosphorylation
Phosphorylation - drug effects
Protein Domains
Recruitment
Screens
Small Molecule Libraries - pharmacology
Therapeutic applications
Tight Junctions - drug effects
Tight Junctions - metabolism
Toxicity
Tumor necrosis factor
Tumor Necrosis Factor-alpha - pharmacology
Tumor necrosis factor-TNF
Tumors
title Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20MLCK1%20diversion%20reverses%20barrier%20loss%20to%20restore%20mucosal%20homeostasis&rft.jtitle=Nature%20medicine&rft.au=Graham,%20W.%20Vallen&rft.date=2019-04-01&rft.volume=25&rft.issue=4&rft.spage=690&rft.epage=700&rft.pages=690-700&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-019-0393-7&rft_dat=%3Cgale_pubme%3EA581338873%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203125050&rft_id=info:pmid/30936544&rft_galeid=A581338873&rfr_iscdi=true