Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis
Epithelial barrier loss is a driver of intestinal and systemic diseases. Myosin light chain kinase (MLCK) is a key effector of barrier dysfunction and a potential therapeutic target, but enzymatic inhibition has unacceptable toxicity. Here, we show that a unique domain within the MLCK splice variant...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2019-04, Vol.25 (4), p.690-700 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 700 |
---|---|
container_issue | 4 |
container_start_page | 690 |
container_title | Nature medicine |
container_volume | 25 |
creator | Graham, W. Vallen He, Weiqi Marchiando, Amanda M. Zha, Juanmin Singh, Gurminder Li, Hua-Shan Biswas, Amlan Ong, Ma. Lora Drizella M. Jiang, Zhi-Hui Choi, Wangsun Zuccola, Harmon Wang, Yitang Griffith, James Wu, Jingshing Rosenberg, Harry J. Wang, Yingmin Snapper, Scott B. Ostrov, David Meredith, Stephen C. Miller, Lawrence W. Turner, Jerrold R. |
description | Epithelial barrier loss is a driver of intestinal and systemic diseases. Myosin light chain kinase (MLCK) is a key effector of barrier dysfunction and a potential therapeutic target, but enzymatic inhibition has unacceptable toxicity. Here, we show that a unique domain within the MLCK splice variant MLCK1 directs perijunctional actomyosin ring (PAMR) recruitment. Using the domain structure and multiple screens, we identify a domain-binding small molecule (divertin) that blocks MLCK1 recruitment without inhibiting enzymatic function. Divertin blocks acute, tumor necrosis factor (TNF)-induced MLCK1 recruitment as well as downstream myosin light chain (MLC) phosphorylation, barrier loss, and diarrhea in vitro and in vivo. Divertin corrects barrier dysfunction and prevents disease development and progression in experimental inflammatory bowel disease. Beyond applications of divertin in gastrointestinal disease, this general approach to enzymatic inhibition by preventing access to specific subcellular sites provides a new paradigm for safely and precisely targeting individual properties of enzymes with multiple functions.
A small molecule that restores the integrity of the intestinal barrier provides a novel therapeutic strategy for inflammatory bowel diseases. |
doi_str_mv | 10.1038/s41591-019-0393-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6461392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A581338873</galeid><sourcerecordid>A581338873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c674t-b8a8fcd875509b81f927b55cfd27ec1695b6941418aec8de1e3ac0bcaed863ff3</originalsourceid><addsrcrecordid>eNqNkl2L1TAQhoMo7nr0B3gjBUH0omvSNE1yIywHPw4eWVg_8C6k6bQnS9qsSbvovzflrLtbOYLkIkPmmZfMzIvQU4JPCKbidSwJkyTHROaYSprze-iYsLLKCcff76cYc5ELyaoj9CjGC4wxxUw-REcUS1qxsjxG55thDNqAc5PTIfu0XX8kWWOvIETrhyzAHEHMah2ChZA5H2M2-pSIow-Q9ZPxUbts53vwcdTRxsfoQatdhCfX9wp9fff2y_pDvj17v1mfbnNT8XLMa6FFaxrBGcOyFqSVBa8ZM21TcDCkkqyuZElKIjQY0QABqg2ujYZGVLRt6Qq92eteTnUPjYG5E6cug-11-KW8tmqZGexOdf5KVWVFqCySwMtrgeB_TKkh1ds4j0IP4KeoigIXRDKeRrtCz_9CL_wUhtTeTFFSMMzwLdVpB8oOrZ9nO4uqUyYIpUJwmqj8ANXBAOmTfoDWpucFf3KAT6eB3pqDBa8WBYkZ4efY6SlGtfl8_v_s2bcl--IOuwPtxl30bhqTU-ISJHvQhGSXAO3NUghWs3PV3rkqOVfNzlU81Ty7u82bij9WTUCxB2JKDR2E2xX8W_U36Hf2lw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203125050</pqid></control><display><type>article</type><title>Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Graham, W. Vallen ; He, Weiqi ; Marchiando, Amanda M. ; Zha, Juanmin ; Singh, Gurminder ; Li, Hua-Shan ; Biswas, Amlan ; Ong, Ma. Lora Drizella M. ; Jiang, Zhi-Hui ; Choi, Wangsun ; Zuccola, Harmon ; Wang, Yitang ; Griffith, James ; Wu, Jingshing ; Rosenberg, Harry J. ; Wang, Yingmin ; Snapper, Scott B. ; Ostrov, David ; Meredith, Stephen C. ; Miller, Lawrence W. ; Turner, Jerrold R.</creator><creatorcontrib>Graham, W. Vallen ; He, Weiqi ; Marchiando, Amanda M. ; Zha, Juanmin ; Singh, Gurminder ; Li, Hua-Shan ; Biswas, Amlan ; Ong, Ma. Lora Drizella M. ; Jiang, Zhi-Hui ; Choi, Wangsun ; Zuccola, Harmon ; Wang, Yitang ; Griffith, James ; Wu, Jingshing ; Rosenberg, Harry J. ; Wang, Yingmin ; Snapper, Scott B. ; Ostrov, David ; Meredith, Stephen C. ; Miller, Lawrence W. ; Turner, Jerrold R.</creatorcontrib><description>Epithelial barrier loss is a driver of intestinal and systemic diseases. Myosin light chain kinase (MLCK) is a key effector of barrier dysfunction and a potential therapeutic target, but enzymatic inhibition has unacceptable toxicity. Here, we show that a unique domain within the MLCK splice variant MLCK1 directs perijunctional actomyosin ring (PAMR) recruitment. Using the domain structure and multiple screens, we identify a domain-binding small molecule (divertin) that blocks MLCK1 recruitment without inhibiting enzymatic function. Divertin blocks acute, tumor necrosis factor (TNF)-induced MLCK1 recruitment as well as downstream myosin light chain (MLC) phosphorylation, barrier loss, and diarrhea in vitro and in vivo. Divertin corrects barrier dysfunction and prevents disease development and progression in experimental inflammatory bowel disease. Beyond applications of divertin in gastrointestinal disease, this general approach to enzymatic inhibition by preventing access to specific subcellular sites provides a new paradigm for safely and precisely targeting individual properties of enzymes with multiple functions.
A small molecule that restores the integrity of the intestinal barrier provides a novel therapeutic strategy for inflammatory bowel diseases.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-019-0393-7</identifier><identifier>PMID: 30936544</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/250/347 ; 631/80/304 ; Actomyosin ; Actomyosin - metabolism ; Alternative splicing ; Animals ; Biocompatibility ; Biomedical and Life Sciences ; Biomedicine ; Caco-2 Cells ; Cancer Research ; Care and treatment ; Chains ; Chronic Disease ; Development and progression ; Diarrhea ; Disease ; Enzymes ; Gastrointestinal diseases ; Homeostasis ; Homeostasis - drug effects ; Humans ; Infectious Diseases ; Inflammation - pathology ; Inflammatory bowel diseases ; Inflammatory Bowel Diseases - pathology ; Intestinal Mucosa - drug effects ; Intestinal Mucosa - metabolism ; Intestine ; Intracellular Space - enzymology ; Jejunum - drug effects ; Jejunum - metabolism ; Jejunum - pathology ; Kinases ; Metabolic Diseases ; Mice ; Molecular Medicine ; Mucosa ; Muscle proteins ; Myosin ; Myosin Light Chains - metabolism ; Myosin-light-chain kinase ; Myosin-Light-Chain Kinase - chemistry ; Myosin-Light-Chain Kinase - metabolism ; Necrosis ; Neurosciences ; Novels ; Phosphorylation ; Phosphorylation - drug effects ; Protein Domains ; Recruitment ; Screens ; Small Molecule Libraries - pharmacology ; Therapeutic applications ; Tight Junctions - drug effects ; Tight Junctions - metabolism ; Toxicity ; Tumor necrosis factor ; Tumor Necrosis Factor-alpha - pharmacology ; Tumor necrosis factor-TNF ; Tumors</subject><ispartof>Nature medicine, 2019-04, Vol.25 (4), p.690-700</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c674t-b8a8fcd875509b81f927b55cfd27ec1695b6941418aec8de1e3ac0bcaed863ff3</citedby><cites>FETCH-LOGICAL-c674t-b8a8fcd875509b81f927b55cfd27ec1695b6941418aec8de1e3ac0bcaed863ff3</cites><orcidid>0000-0003-3137-8420 ; 0000-0003-0627-9455 ; 0000-0003-3815-7532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-019-0393-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-019-0393-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30936544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Graham, W. Vallen</creatorcontrib><creatorcontrib>He, Weiqi</creatorcontrib><creatorcontrib>Marchiando, Amanda M.</creatorcontrib><creatorcontrib>Zha, Juanmin</creatorcontrib><creatorcontrib>Singh, Gurminder</creatorcontrib><creatorcontrib>Li, Hua-Shan</creatorcontrib><creatorcontrib>Biswas, Amlan</creatorcontrib><creatorcontrib>Ong, Ma. Lora Drizella M.</creatorcontrib><creatorcontrib>Jiang, Zhi-Hui</creatorcontrib><creatorcontrib>Choi, Wangsun</creatorcontrib><creatorcontrib>Zuccola, Harmon</creatorcontrib><creatorcontrib>Wang, Yitang</creatorcontrib><creatorcontrib>Griffith, James</creatorcontrib><creatorcontrib>Wu, Jingshing</creatorcontrib><creatorcontrib>Rosenberg, Harry J.</creatorcontrib><creatorcontrib>Wang, Yingmin</creatorcontrib><creatorcontrib>Snapper, Scott B.</creatorcontrib><creatorcontrib>Ostrov, David</creatorcontrib><creatorcontrib>Meredith, Stephen C.</creatorcontrib><creatorcontrib>Miller, Lawrence W.</creatorcontrib><creatorcontrib>Turner, Jerrold R.</creatorcontrib><title>Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Epithelial barrier loss is a driver of intestinal and systemic diseases. Myosin light chain kinase (MLCK) is a key effector of barrier dysfunction and a potential therapeutic target, but enzymatic inhibition has unacceptable toxicity. Here, we show that a unique domain within the MLCK splice variant MLCK1 directs perijunctional actomyosin ring (PAMR) recruitment. Using the domain structure and multiple screens, we identify a domain-binding small molecule (divertin) that blocks MLCK1 recruitment without inhibiting enzymatic function. Divertin blocks acute, tumor necrosis factor (TNF)-induced MLCK1 recruitment as well as downstream myosin light chain (MLC) phosphorylation, barrier loss, and diarrhea in vitro and in vivo. Divertin corrects barrier dysfunction and prevents disease development and progression in experimental inflammatory bowel disease. Beyond applications of divertin in gastrointestinal disease, this general approach to enzymatic inhibition by preventing access to specific subcellular sites provides a new paradigm for safely and precisely targeting individual properties of enzymes with multiple functions.
A small molecule that restores the integrity of the intestinal barrier provides a novel therapeutic strategy for inflammatory bowel diseases.</description><subject>631/250/347</subject><subject>631/80/304</subject><subject>Actomyosin</subject><subject>Actomyosin - metabolism</subject><subject>Alternative splicing</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Caco-2 Cells</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>Chains</subject><subject>Chronic Disease</subject><subject>Development and progression</subject><subject>Diarrhea</subject><subject>Disease</subject><subject>Enzymes</subject><subject>Gastrointestinal diseases</subject><subject>Homeostasis</subject><subject>Homeostasis - drug effects</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Inflammation - pathology</subject><subject>Inflammatory bowel diseases</subject><subject>Inflammatory Bowel Diseases - pathology</subject><subject>Intestinal Mucosa - drug effects</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestine</subject><subject>Intracellular Space - enzymology</subject><subject>Jejunum - drug effects</subject><subject>Jejunum - metabolism</subject><subject>Jejunum - pathology</subject><subject>Kinases</subject><subject>Metabolic Diseases</subject><subject>Mice</subject><subject>Molecular Medicine</subject><subject>Mucosa</subject><subject>Muscle proteins</subject><subject>Myosin</subject><subject>Myosin Light Chains - metabolism</subject><subject>Myosin-light-chain kinase</subject><subject>Myosin-Light-Chain Kinase - chemistry</subject><subject>Myosin-Light-Chain Kinase - metabolism</subject><subject>Necrosis</subject><subject>Neurosciences</subject><subject>Novels</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Protein Domains</subject><subject>Recruitment</subject><subject>Screens</subject><subject>Small Molecule Libraries - pharmacology</subject><subject>Therapeutic applications</subject><subject>Tight Junctions - drug effects</subject><subject>Tight Junctions - metabolism</subject><subject>Toxicity</subject><subject>Tumor necrosis factor</subject><subject>Tumor Necrosis Factor-alpha - pharmacology</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumors</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl2L1TAQhoMo7nr0B3gjBUH0omvSNE1yIywHPw4eWVg_8C6k6bQnS9qsSbvovzflrLtbOYLkIkPmmZfMzIvQU4JPCKbidSwJkyTHROaYSprze-iYsLLKCcff76cYc5ELyaoj9CjGC4wxxUw-REcUS1qxsjxG55thDNqAc5PTIfu0XX8kWWOvIETrhyzAHEHMah2ChZA5H2M2-pSIow-Q9ZPxUbts53vwcdTRxsfoQatdhCfX9wp9fff2y_pDvj17v1mfbnNT8XLMa6FFaxrBGcOyFqSVBa8ZM21TcDCkkqyuZElKIjQY0QABqg2ujYZGVLRt6Qq92eteTnUPjYG5E6cug-11-KW8tmqZGexOdf5KVWVFqCySwMtrgeB_TKkh1ds4j0IP4KeoigIXRDKeRrtCz_9CL_wUhtTeTFFSMMzwLdVpB8oOrZ9nO4uqUyYIpUJwmqj8ANXBAOmTfoDWpucFf3KAT6eB3pqDBa8WBYkZ4efY6SlGtfl8_v_s2bcl--IOuwPtxl30bhqTU-ISJHvQhGSXAO3NUghWs3PV3rkqOVfNzlU81Ty7u82bij9WTUCxB2JKDR2E2xX8W_U36Hf2lw</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Graham, W. Vallen</creator><creator>He, Weiqi</creator><creator>Marchiando, Amanda M.</creator><creator>Zha, Juanmin</creator><creator>Singh, Gurminder</creator><creator>Li, Hua-Shan</creator><creator>Biswas, Amlan</creator><creator>Ong, Ma. Lora Drizella M.</creator><creator>Jiang, Zhi-Hui</creator><creator>Choi, Wangsun</creator><creator>Zuccola, Harmon</creator><creator>Wang, Yitang</creator><creator>Griffith, James</creator><creator>Wu, Jingshing</creator><creator>Rosenberg, Harry J.</creator><creator>Wang, Yingmin</creator><creator>Snapper, Scott B.</creator><creator>Ostrov, David</creator><creator>Meredith, Stephen C.</creator><creator>Miller, Lawrence W.</creator><creator>Turner, Jerrold R.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3137-8420</orcidid><orcidid>https://orcid.org/0000-0003-0627-9455</orcidid><orcidid>https://orcid.org/0000-0003-3815-7532</orcidid></search><sort><creationdate>20190401</creationdate><title>Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis</title><author>Graham, W. Vallen ; He, Weiqi ; Marchiando, Amanda M. ; Zha, Juanmin ; Singh, Gurminder ; Li, Hua-Shan ; Biswas, Amlan ; Ong, Ma. Lora Drizella M. ; Jiang, Zhi-Hui ; Choi, Wangsun ; Zuccola, Harmon ; Wang, Yitang ; Griffith, James ; Wu, Jingshing ; Rosenberg, Harry J. ; Wang, Yingmin ; Snapper, Scott B. ; Ostrov, David ; Meredith, Stephen C. ; Miller, Lawrence W. ; Turner, Jerrold R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c674t-b8a8fcd875509b81f927b55cfd27ec1695b6941418aec8de1e3ac0bcaed863ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/250/347</topic><topic>631/80/304</topic><topic>Actomyosin</topic><topic>Actomyosin - metabolism</topic><topic>Alternative splicing</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Caco-2 Cells</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>Chains</topic><topic>Chronic Disease</topic><topic>Development and progression</topic><topic>Diarrhea</topic><topic>Disease</topic><topic>Enzymes</topic><topic>Gastrointestinal diseases</topic><topic>Homeostasis</topic><topic>Homeostasis - drug effects</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Inflammation - pathology</topic><topic>Inflammatory bowel diseases</topic><topic>Inflammatory Bowel Diseases - pathology</topic><topic>Intestinal Mucosa - drug effects</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestine</topic><topic>Intracellular Space - enzymology</topic><topic>Jejunum - drug effects</topic><topic>Jejunum - metabolism</topic><topic>Jejunum - pathology</topic><topic>Kinases</topic><topic>Metabolic Diseases</topic><topic>Mice</topic><topic>Molecular Medicine</topic><topic>Mucosa</topic><topic>Muscle proteins</topic><topic>Myosin</topic><topic>Myosin Light Chains - metabolism</topic><topic>Myosin-light-chain kinase</topic><topic>Myosin-Light-Chain Kinase - chemistry</topic><topic>Myosin-Light-Chain Kinase - metabolism</topic><topic>Necrosis</topic><topic>Neurosciences</topic><topic>Novels</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Protein Domains</topic><topic>Recruitment</topic><topic>Screens</topic><topic>Small Molecule Libraries - pharmacology</topic><topic>Therapeutic applications</topic><topic>Tight Junctions - drug effects</topic><topic>Tight Junctions - metabolism</topic><topic>Toxicity</topic><topic>Tumor necrosis factor</topic><topic>Tumor Necrosis Factor-alpha - pharmacology</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graham, W. Vallen</creatorcontrib><creatorcontrib>He, Weiqi</creatorcontrib><creatorcontrib>Marchiando, Amanda M.</creatorcontrib><creatorcontrib>Zha, Juanmin</creatorcontrib><creatorcontrib>Singh, Gurminder</creatorcontrib><creatorcontrib>Li, Hua-Shan</creatorcontrib><creatorcontrib>Biswas, Amlan</creatorcontrib><creatorcontrib>Ong, Ma. Lora Drizella M.</creatorcontrib><creatorcontrib>Jiang, Zhi-Hui</creatorcontrib><creatorcontrib>Choi, Wangsun</creatorcontrib><creatorcontrib>Zuccola, Harmon</creatorcontrib><creatorcontrib>Wang, Yitang</creatorcontrib><creatorcontrib>Griffith, James</creatorcontrib><creatorcontrib>Wu, Jingshing</creatorcontrib><creatorcontrib>Rosenberg, Harry J.</creatorcontrib><creatorcontrib>Wang, Yingmin</creatorcontrib><creatorcontrib>Snapper, Scott B.</creatorcontrib><creatorcontrib>Ostrov, David</creatorcontrib><creatorcontrib>Meredith, Stephen C.</creatorcontrib><creatorcontrib>Miller, Lawrence W.</creatorcontrib><creatorcontrib>Turner, Jerrold R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graham, W. Vallen</au><au>He, Weiqi</au><au>Marchiando, Amanda M.</au><au>Zha, Juanmin</au><au>Singh, Gurminder</au><au>Li, Hua-Shan</au><au>Biswas, Amlan</au><au>Ong, Ma. Lora Drizella M.</au><au>Jiang, Zhi-Hui</au><au>Choi, Wangsun</au><au>Zuccola, Harmon</au><au>Wang, Yitang</au><au>Griffith, James</au><au>Wu, Jingshing</au><au>Rosenberg, Harry J.</au><au>Wang, Yingmin</au><au>Snapper, Scott B.</au><au>Ostrov, David</au><au>Meredith, Stephen C.</au><au>Miller, Lawrence W.</au><au>Turner, Jerrold R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>25</volume><issue>4</issue><spage>690</spage><epage>700</epage><pages>690-700</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Epithelial barrier loss is a driver of intestinal and systemic diseases. Myosin light chain kinase (MLCK) is a key effector of barrier dysfunction and a potential therapeutic target, but enzymatic inhibition has unacceptable toxicity. Here, we show that a unique domain within the MLCK splice variant MLCK1 directs perijunctional actomyosin ring (PAMR) recruitment. Using the domain structure and multiple screens, we identify a domain-binding small molecule (divertin) that blocks MLCK1 recruitment without inhibiting enzymatic function. Divertin blocks acute, tumor necrosis factor (TNF)-induced MLCK1 recruitment as well as downstream myosin light chain (MLC) phosphorylation, barrier loss, and diarrhea in vitro and in vivo. Divertin corrects barrier dysfunction and prevents disease development and progression in experimental inflammatory bowel disease. Beyond applications of divertin in gastrointestinal disease, this general approach to enzymatic inhibition by preventing access to specific subcellular sites provides a new paradigm for safely and precisely targeting individual properties of enzymes with multiple functions.
A small molecule that restores the integrity of the intestinal barrier provides a novel therapeutic strategy for inflammatory bowel diseases.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30936544</pmid><doi>10.1038/s41591-019-0393-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3137-8420</orcidid><orcidid>https://orcid.org/0000-0003-0627-9455</orcidid><orcidid>https://orcid.org/0000-0003-3815-7532</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2019-04, Vol.25 (4), p.690-700 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6461392 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/250/347 631/80/304 Actomyosin Actomyosin - metabolism Alternative splicing Animals Biocompatibility Biomedical and Life Sciences Biomedicine Caco-2 Cells Cancer Research Care and treatment Chains Chronic Disease Development and progression Diarrhea Disease Enzymes Gastrointestinal diseases Homeostasis Homeostasis - drug effects Humans Infectious Diseases Inflammation - pathology Inflammatory bowel diseases Inflammatory Bowel Diseases - pathology Intestinal Mucosa - drug effects Intestinal Mucosa - metabolism Intestine Intracellular Space - enzymology Jejunum - drug effects Jejunum - metabolism Jejunum - pathology Kinases Metabolic Diseases Mice Molecular Medicine Mucosa Muscle proteins Myosin Myosin Light Chains - metabolism Myosin-light-chain kinase Myosin-Light-Chain Kinase - chemistry Myosin-Light-Chain Kinase - metabolism Necrosis Neurosciences Novels Phosphorylation Phosphorylation - drug effects Protein Domains Recruitment Screens Small Molecule Libraries - pharmacology Therapeutic applications Tight Junctions - drug effects Tight Junctions - metabolism Toxicity Tumor necrosis factor Tumor Necrosis Factor-alpha - pharmacology Tumor necrosis factor-TNF Tumors |
title | Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20MLCK1%20diversion%20reverses%20barrier%20loss%20to%20restore%20mucosal%20homeostasis&rft.jtitle=Nature%20medicine&rft.au=Graham,%20W.%20Vallen&rft.date=2019-04-01&rft.volume=25&rft.issue=4&rft.spage=690&rft.epage=700&rft.pages=690-700&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-019-0393-7&rft_dat=%3Cgale_pubme%3EA581338873%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203125050&rft_id=info:pmid/30936544&rft_galeid=A581338873&rfr_iscdi=true |