Diverse small molecules prevent macrophage lysis during pyroptosis
Pyroptosis is a programmed process of proinflammatory cell death mediated by caspase-1-related proteases that cleave the pore-forming protein, gasdermin D, causing cell lysis and release of inflammatory intracellular contents. The amino acid glycine prevents pyroptotic lysis via unknown mechanisms,...
Gespeichert in:
Veröffentlicht in: | Cell death & disease 2019-04, Vol.10 (4), p.326, Article 326 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 326 |
container_title | Cell death & disease |
container_volume | 10 |
creator | Loomis, Wendy P. den Hartigh, Andreas B. Cookson, Brad T. Fink, Susan L. |
description | Pyroptosis is a programmed process of proinflammatory cell death mediated by caspase-1-related proteases that cleave the pore-forming protein, gasdermin D, causing cell lysis and release of inflammatory intracellular contents. The amino acid glycine prevents pyroptotic lysis via unknown mechanisms, without affecting caspase-1 activation or pore formation. Pyroptosis plays a critical role in diverse inflammatory diseases, including sepsis. Septic lethality is prevented by glycine treatment, suggesting that glycine-mediated cytoprotection may provide therapeutic benefit. In this study, we systematically examined a panel of small molecules, structurally related to glycine, for their ability to prevent pyroptotic lysis. We found a requirement for the carboxyl group, and limited tolerance for larger amino groups and substitution of the hydrogen R group. Glycine is an agonist for the neuronal glycine receptor, which acts as a ligand-gated chloride channel. The array of cytoprotective small molecules we identified resembles that of known glycine receptor modulators. However, using genetically deficient
Glrb
mutant macrophages, we found that the glycine receptor is not required for pyroptotic cytoprotection. Furthermore, protection against pyroptotic lysis is independent of extracellular chloride conductance, arguing against an effect mediated by ligand-gated chloride channels. Finally, we conducted a small-scale, hypothesis-driven small-molecule screen and identified unexpected ion channel modulators that prevent pyroptotic lysis with increased potency compared to glycine. Together, these findings demonstrate that pyroptotic lysis can be pharmacologically modulated and pave the way toward identification of therapeutic strategies for pathologic conditions associated with pyroptosis. |
doi_str_mv | 10.1038/s41419-019-1559-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6459844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207980662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b807c9b596e67db13e7fae000e10b3680b31359e222cab24a90a990c3f31cdb03</originalsourceid><addsrcrecordid>eNp1kFtLwzAYhoMobsz9AG-k4HU1p7bJjaDzCANv9Dqk6detoyeTdrB_b0rnnBcGcuDLm_d78yB0SfANwUzcOk44kSH2k0SRDPkJmlLMSciFkKdH5wmaO7fBfjCGaRSfownDMolkIqbo4bHYgnUQuEqXZVA1JZi-BBe0FrZQd0GljW3atV5BUO5c4YKst0W9CtqdL3eNr1ygs1yXDub7fYY-n58-Fq_h8v3lbXG_DA1PcBemAidGppGMIU6ylDBIcg0-FRCcslj4hbBIAqXU6JRyLbGWEhuWM2KyFLMZuht92z6tIDM-ndWlam1RabtTjS7U35u6WKtVs1Uxj6Tg3Btc7w1s89WD69Sm6W3tMytKcSIFjmPqVWRU-X87ZyE_dCBYDeTVSF558mogrwbnq-Nohxc_nL2AjgLXDvTA_rb-3_UbifiPvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207980662</pqid></control><display><type>article</type><title>Diverse small molecules prevent macrophage lysis during pyroptosis</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Loomis, Wendy P. ; den Hartigh, Andreas B. ; Cookson, Brad T. ; Fink, Susan L.</creator><creatorcontrib>Loomis, Wendy P. ; den Hartigh, Andreas B. ; Cookson, Brad T. ; Fink, Susan L.</creatorcontrib><description>Pyroptosis is a programmed process of proinflammatory cell death mediated by caspase-1-related proteases that cleave the pore-forming protein, gasdermin D, causing cell lysis and release of inflammatory intracellular contents. The amino acid glycine prevents pyroptotic lysis via unknown mechanisms, without affecting caspase-1 activation or pore formation. Pyroptosis plays a critical role in diverse inflammatory diseases, including sepsis. Septic lethality is prevented by glycine treatment, suggesting that glycine-mediated cytoprotection may provide therapeutic benefit. In this study, we systematically examined a panel of small molecules, structurally related to glycine, for their ability to prevent pyroptotic lysis. We found a requirement for the carboxyl group, and limited tolerance for larger amino groups and substitution of the hydrogen R group. Glycine is an agonist for the neuronal glycine receptor, which acts as a ligand-gated chloride channel. The array of cytoprotective small molecules we identified resembles that of known glycine receptor modulators. However, using genetically deficient
Glrb
mutant macrophages, we found that the glycine receptor is not required for pyroptotic cytoprotection. Furthermore, protection against pyroptotic lysis is independent of extracellular chloride conductance, arguing against an effect mediated by ligand-gated chloride channels. Finally, we conducted a small-scale, hypothesis-driven small-molecule screen and identified unexpected ion channel modulators that prevent pyroptotic lysis with increased potency compared to glycine. Together, these findings demonstrate that pyroptotic lysis can be pharmacologically modulated and pave the way toward identification of therapeutic strategies for pathologic conditions associated with pyroptosis.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-019-1559-4</identifier><identifier>PMID: 30975978</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/106 ; 13/2 ; 631/250/1933 ; 631/80/82 ; Amino acids ; Amino groups ; Animals ; Antibodies ; Antigens, Bacterial - toxicity ; Apoptosis ; Bacterial Toxins - toxicity ; Biochemistry ; Biomedical and Life Sciences ; Caspase ; Caspase 1 - metabolism ; Caspase-1 ; Cell Biology ; Cell Culture ; Cell Death ; Cells, Cultured ; Chloride channels ; Chloride conductance ; Cytoprotection - drug effects ; Glycine - analogs & derivatives ; Glycine - chemistry ; Glycine - metabolism ; Immunology ; Inflammatory diseases ; Ion Channels - metabolism ; Ion Channels - physiology ; Lethality ; Life Sciences ; Ligands ; Lysis ; Macrophages ; Macrophages - drug effects ; Macrophages - metabolism ; Macrophages - microbiology ; Mice ; Mice, Inbred BALB C ; Neuromodulation ; Pyroptosis ; Pyroptosis - physiology ; Receptors, Glycine - agonists ; Receptors, Glycine - antagonists & inhibitors ; Receptors, Glycine - metabolism ; Salmonella ; Sepsis</subject><ispartof>Cell death & disease, 2019-04, Vol.10 (4), p.326, Article 326</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b807c9b596e67db13e7fae000e10b3680b31359e222cab24a90a990c3f31cdb03</citedby><cites>FETCH-LOGICAL-c470t-b807c9b596e67db13e7fae000e10b3680b31359e222cab24a90a990c3f31cdb03</cites><orcidid>0000-0003-1705-0103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459844/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459844/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30975978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loomis, Wendy P.</creatorcontrib><creatorcontrib>den Hartigh, Andreas B.</creatorcontrib><creatorcontrib>Cookson, Brad T.</creatorcontrib><creatorcontrib>Fink, Susan L.</creatorcontrib><title>Diverse small molecules prevent macrophage lysis during pyroptosis</title><title>Cell death & disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Pyroptosis is a programmed process of proinflammatory cell death mediated by caspase-1-related proteases that cleave the pore-forming protein, gasdermin D, causing cell lysis and release of inflammatory intracellular contents. The amino acid glycine prevents pyroptotic lysis via unknown mechanisms, without affecting caspase-1 activation or pore formation. Pyroptosis plays a critical role in diverse inflammatory diseases, including sepsis. Septic lethality is prevented by glycine treatment, suggesting that glycine-mediated cytoprotection may provide therapeutic benefit. In this study, we systematically examined a panel of small molecules, structurally related to glycine, for their ability to prevent pyroptotic lysis. We found a requirement for the carboxyl group, and limited tolerance for larger amino groups and substitution of the hydrogen R group. Glycine is an agonist for the neuronal glycine receptor, which acts as a ligand-gated chloride channel. The array of cytoprotective small molecules we identified resembles that of known glycine receptor modulators. However, using genetically deficient
Glrb
mutant macrophages, we found that the glycine receptor is not required for pyroptotic cytoprotection. Furthermore, protection against pyroptotic lysis is independent of extracellular chloride conductance, arguing against an effect mediated by ligand-gated chloride channels. Finally, we conducted a small-scale, hypothesis-driven small-molecule screen and identified unexpected ion channel modulators that prevent pyroptotic lysis with increased potency compared to glycine. Together, these findings demonstrate that pyroptotic lysis can be pharmacologically modulated and pave the way toward identification of therapeutic strategies for pathologic conditions associated with pyroptosis.</description><subject>13</subject><subject>13/106</subject><subject>13/2</subject><subject>631/250/1933</subject><subject>631/80/82</subject><subject>Amino acids</subject><subject>Amino groups</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antigens, Bacterial - toxicity</subject><subject>Apoptosis</subject><subject>Bacterial Toxins - toxicity</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Caspase</subject><subject>Caspase 1 - metabolism</subject><subject>Caspase-1</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Death</subject><subject>Cells, Cultured</subject><subject>Chloride channels</subject><subject>Chloride conductance</subject><subject>Cytoprotection - drug effects</subject><subject>Glycine - analogs & derivatives</subject><subject>Glycine - chemistry</subject><subject>Glycine - metabolism</subject><subject>Immunology</subject><subject>Inflammatory diseases</subject><subject>Ion Channels - metabolism</subject><subject>Ion Channels - physiology</subject><subject>Lethality</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Lysis</subject><subject>Macrophages</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Neuromodulation</subject><subject>Pyroptosis</subject><subject>Pyroptosis - physiology</subject><subject>Receptors, Glycine - agonists</subject><subject>Receptors, Glycine - antagonists & inhibitors</subject><subject>Receptors, Glycine - metabolism</subject><subject>Salmonella</subject><subject>Sepsis</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kFtLwzAYhoMobsz9AG-k4HU1p7bJjaDzCANv9Dqk6detoyeTdrB_b0rnnBcGcuDLm_d78yB0SfANwUzcOk44kSH2k0SRDPkJmlLMSciFkKdH5wmaO7fBfjCGaRSfownDMolkIqbo4bHYgnUQuEqXZVA1JZi-BBe0FrZQd0GljW3atV5BUO5c4YKst0W9CtqdL3eNr1ygs1yXDub7fYY-n58-Fq_h8v3lbXG_DA1PcBemAidGppGMIU6ylDBIcg0-FRCcslj4hbBIAqXU6JRyLbGWEhuWM2KyFLMZuht92z6tIDM-ndWlam1RabtTjS7U35u6WKtVs1Uxj6Tg3Btc7w1s89WD69Sm6W3tMytKcSIFjmPqVWRU-X87ZyE_dCBYDeTVSF558mogrwbnq-Nohxc_nL2AjgLXDvTA_rb-3_UbifiPvQ</recordid><startdate>20190411</startdate><enddate>20190411</enddate><creator>Loomis, Wendy P.</creator><creator>den Hartigh, Andreas B.</creator><creator>Cookson, Brad T.</creator><creator>Fink, Susan L.</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1705-0103</orcidid></search><sort><creationdate>20190411</creationdate><title>Diverse small molecules prevent macrophage lysis during pyroptosis</title><author>Loomis, Wendy P. ; den Hartigh, Andreas B. ; Cookson, Brad T. ; Fink, Susan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b807c9b596e67db13e7fae000e10b3680b31359e222cab24a90a990c3f31cdb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>13/106</topic><topic>13/2</topic><topic>631/250/1933</topic><topic>631/80/82</topic><topic>Amino acids</topic><topic>Amino groups</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antigens, Bacterial - toxicity</topic><topic>Apoptosis</topic><topic>Bacterial Toxins - toxicity</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Caspase</topic><topic>Caspase 1 - metabolism</topic><topic>Caspase-1</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Death</topic><topic>Cells, Cultured</topic><topic>Chloride channels</topic><topic>Chloride conductance</topic><topic>Cytoprotection - drug effects</topic><topic>Glycine - analogs & derivatives</topic><topic>Glycine - chemistry</topic><topic>Glycine - metabolism</topic><topic>Immunology</topic><topic>Inflammatory diseases</topic><topic>Ion Channels - metabolism</topic><topic>Ion Channels - physiology</topic><topic>Lethality</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Lysis</topic><topic>Macrophages</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Neuromodulation</topic><topic>Pyroptosis</topic><topic>Pyroptosis - physiology</topic><topic>Receptors, Glycine - agonists</topic><topic>Receptors, Glycine - antagonists & inhibitors</topic><topic>Receptors, Glycine - metabolism</topic><topic>Salmonella</topic><topic>Sepsis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loomis, Wendy P.</creatorcontrib><creatorcontrib>den Hartigh, Andreas B.</creatorcontrib><creatorcontrib>Cookson, Brad T.</creatorcontrib><creatorcontrib>Fink, Susan L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death & disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loomis, Wendy P.</au><au>den Hartigh, Andreas B.</au><au>Cookson, Brad T.</au><au>Fink, Susan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse small molecules prevent macrophage lysis during pyroptosis</atitle><jtitle>Cell death & disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2019-04-11</date><risdate>2019</risdate><volume>10</volume><issue>4</issue><spage>326</spage><pages>326-</pages><artnum>326</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Pyroptosis is a programmed process of proinflammatory cell death mediated by caspase-1-related proteases that cleave the pore-forming protein, gasdermin D, causing cell lysis and release of inflammatory intracellular contents. The amino acid glycine prevents pyroptotic lysis via unknown mechanisms, without affecting caspase-1 activation or pore formation. Pyroptosis plays a critical role in diverse inflammatory diseases, including sepsis. Septic lethality is prevented by glycine treatment, suggesting that glycine-mediated cytoprotection may provide therapeutic benefit. In this study, we systematically examined a panel of small molecules, structurally related to glycine, for their ability to prevent pyroptotic lysis. We found a requirement for the carboxyl group, and limited tolerance for larger amino groups and substitution of the hydrogen R group. Glycine is an agonist for the neuronal glycine receptor, which acts as a ligand-gated chloride channel. The array of cytoprotective small molecules we identified resembles that of known glycine receptor modulators. However, using genetically deficient
Glrb
mutant macrophages, we found that the glycine receptor is not required for pyroptotic cytoprotection. Furthermore, protection against pyroptotic lysis is independent of extracellular chloride conductance, arguing against an effect mediated by ligand-gated chloride channels. Finally, we conducted a small-scale, hypothesis-driven small-molecule screen and identified unexpected ion channel modulators that prevent pyroptotic lysis with increased potency compared to glycine. Together, these findings demonstrate that pyroptotic lysis can be pharmacologically modulated and pave the way toward identification of therapeutic strategies for pathologic conditions associated with pyroptosis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30975978</pmid><doi>10.1038/s41419-019-1559-4</doi><orcidid>https://orcid.org/0000-0003-1705-0103</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-4889 |
ispartof | Cell death & disease, 2019-04, Vol.10 (4), p.326, Article 326 |
issn | 2041-4889 2041-4889 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6459844 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA Free Journals |
subjects | 13 13/106 13/2 631/250/1933 631/80/82 Amino acids Amino groups Animals Antibodies Antigens, Bacterial - toxicity Apoptosis Bacterial Toxins - toxicity Biochemistry Biomedical and Life Sciences Caspase Caspase 1 - metabolism Caspase-1 Cell Biology Cell Culture Cell Death Cells, Cultured Chloride channels Chloride conductance Cytoprotection - drug effects Glycine - analogs & derivatives Glycine - chemistry Glycine - metabolism Immunology Inflammatory diseases Ion Channels - metabolism Ion Channels - physiology Lethality Life Sciences Ligands Lysis Macrophages Macrophages - drug effects Macrophages - metabolism Macrophages - microbiology Mice Mice, Inbred BALB C Neuromodulation Pyroptosis Pyroptosis - physiology Receptors, Glycine - agonists Receptors, Glycine - antagonists & inhibitors Receptors, Glycine - metabolism Salmonella Sepsis |
title | Diverse small molecules prevent macrophage lysis during pyroptosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20small%20molecules%20prevent%20macrophage%20lysis%20during%20pyroptosis&rft.jtitle=Cell%20death%20&%20disease&rft.au=Loomis,%20Wendy%20P.&rft.date=2019-04-11&rft.volume=10&rft.issue=4&rft.spage=326&rft.pages=326-&rft.artnum=326&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-019-1559-4&rft_dat=%3Cproquest_pubme%3E2207980662%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207980662&rft_id=info:pmid/30975978&rfr_iscdi=true |