Diverse small molecules prevent macrophage lysis during pyroptosis

Pyroptosis is a programmed process of proinflammatory cell death mediated by caspase-1-related proteases that cleave the pore-forming protein, gasdermin D, causing cell lysis and release of inflammatory intracellular contents. The amino acid glycine prevents pyroptotic lysis via unknown mechanisms,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2019-04, Vol.10 (4), p.326, Article 326
Hauptverfasser: Loomis, Wendy P., den Hartigh, Andreas B., Cookson, Brad T., Fink, Susan L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 326
container_title Cell death & disease
container_volume 10
creator Loomis, Wendy P.
den Hartigh, Andreas B.
Cookson, Brad T.
Fink, Susan L.
description Pyroptosis is a programmed process of proinflammatory cell death mediated by caspase-1-related proteases that cleave the pore-forming protein, gasdermin D, causing cell lysis and release of inflammatory intracellular contents. The amino acid glycine prevents pyroptotic lysis via unknown mechanisms, without affecting caspase-1 activation or pore formation. Pyroptosis plays a critical role in diverse inflammatory diseases, including sepsis. Septic lethality is prevented by glycine treatment, suggesting that glycine-mediated cytoprotection may provide therapeutic benefit. In this study, we systematically examined a panel of small molecules, structurally related to glycine, for their ability to prevent pyroptotic lysis. We found a requirement for the carboxyl group, and limited tolerance for larger amino groups and substitution of the hydrogen R group. Glycine is an agonist for the neuronal glycine receptor, which acts as a ligand-gated chloride channel. The array of cytoprotective small molecules we identified resembles that of known glycine receptor modulators. However, using genetically deficient Glrb mutant macrophages, we found that the glycine receptor is not required for pyroptotic cytoprotection. Furthermore, protection against pyroptotic lysis is independent of extracellular chloride conductance, arguing against an effect mediated by ligand-gated chloride channels. Finally, we conducted a small-scale, hypothesis-driven small-molecule screen and identified unexpected ion channel modulators that prevent pyroptotic lysis with increased potency compared to glycine. Together, these findings demonstrate that pyroptotic lysis can be pharmacologically modulated and pave the way toward identification of therapeutic strategies for pathologic conditions associated with pyroptosis.
doi_str_mv 10.1038/s41419-019-1559-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6459844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207980662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b807c9b596e67db13e7fae000e10b3680b31359e222cab24a90a990c3f31cdb03</originalsourceid><addsrcrecordid>eNp1kFtLwzAYhoMobsz9AG-k4HU1p7bJjaDzCANv9Dqk6detoyeTdrB_b0rnnBcGcuDLm_d78yB0SfANwUzcOk44kSH2k0SRDPkJmlLMSciFkKdH5wmaO7fBfjCGaRSfownDMolkIqbo4bHYgnUQuEqXZVA1JZi-BBe0FrZQd0GljW3atV5BUO5c4YKst0W9CtqdL3eNr1ygs1yXDub7fYY-n58-Fq_h8v3lbXG_DA1PcBemAidGppGMIU6ylDBIcg0-FRCcslj4hbBIAqXU6JRyLbGWEhuWM2KyFLMZuht92z6tIDM-ndWlam1RabtTjS7U35u6WKtVs1Uxj6Tg3Btc7w1s89WD69Sm6W3tMytKcSIFjmPqVWRU-X87ZyE_dCBYDeTVSF558mogrwbnq-Nohxc_nL2AjgLXDvTA_rb-3_UbifiPvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207980662</pqid></control><display><type>article</type><title>Diverse small molecules prevent macrophage lysis during pyroptosis</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Loomis, Wendy P. ; den Hartigh, Andreas B. ; Cookson, Brad T. ; Fink, Susan L.</creator><creatorcontrib>Loomis, Wendy P. ; den Hartigh, Andreas B. ; Cookson, Brad T. ; Fink, Susan L.</creatorcontrib><description>Pyroptosis is a programmed process of proinflammatory cell death mediated by caspase-1-related proteases that cleave the pore-forming protein, gasdermin D, causing cell lysis and release of inflammatory intracellular contents. The amino acid glycine prevents pyroptotic lysis via unknown mechanisms, without affecting caspase-1 activation or pore formation. Pyroptosis plays a critical role in diverse inflammatory diseases, including sepsis. Septic lethality is prevented by glycine treatment, suggesting that glycine-mediated cytoprotection may provide therapeutic benefit. In this study, we systematically examined a panel of small molecules, structurally related to glycine, for their ability to prevent pyroptotic lysis. We found a requirement for the carboxyl group, and limited tolerance for larger amino groups and substitution of the hydrogen R group. Glycine is an agonist for the neuronal glycine receptor, which acts as a ligand-gated chloride channel. The array of cytoprotective small molecules we identified resembles that of known glycine receptor modulators. However, using genetically deficient Glrb mutant macrophages, we found that the glycine receptor is not required for pyroptotic cytoprotection. Furthermore, protection against pyroptotic lysis is independent of extracellular chloride conductance, arguing against an effect mediated by ligand-gated chloride channels. Finally, we conducted a small-scale, hypothesis-driven small-molecule screen and identified unexpected ion channel modulators that prevent pyroptotic lysis with increased potency compared to glycine. Together, these findings demonstrate that pyroptotic lysis can be pharmacologically modulated and pave the way toward identification of therapeutic strategies for pathologic conditions associated with pyroptosis.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-019-1559-4</identifier><identifier>PMID: 30975978</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/106 ; 13/2 ; 631/250/1933 ; 631/80/82 ; Amino acids ; Amino groups ; Animals ; Antibodies ; Antigens, Bacterial - toxicity ; Apoptosis ; Bacterial Toxins - toxicity ; Biochemistry ; Biomedical and Life Sciences ; Caspase ; Caspase 1 - metabolism ; Caspase-1 ; Cell Biology ; Cell Culture ; Cell Death ; Cells, Cultured ; Chloride channels ; Chloride conductance ; Cytoprotection - drug effects ; Glycine - analogs &amp; derivatives ; Glycine - chemistry ; Glycine - metabolism ; Immunology ; Inflammatory diseases ; Ion Channels - metabolism ; Ion Channels - physiology ; Lethality ; Life Sciences ; Ligands ; Lysis ; Macrophages ; Macrophages - drug effects ; Macrophages - metabolism ; Macrophages - microbiology ; Mice ; Mice, Inbred BALB C ; Neuromodulation ; Pyroptosis ; Pyroptosis - physiology ; Receptors, Glycine - agonists ; Receptors, Glycine - antagonists &amp; inhibitors ; Receptors, Glycine - metabolism ; Salmonella ; Sepsis</subject><ispartof>Cell death &amp; disease, 2019-04, Vol.10 (4), p.326, Article 326</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b807c9b596e67db13e7fae000e10b3680b31359e222cab24a90a990c3f31cdb03</citedby><cites>FETCH-LOGICAL-c470t-b807c9b596e67db13e7fae000e10b3680b31359e222cab24a90a990c3f31cdb03</cites><orcidid>0000-0003-1705-0103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459844/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459844/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30975978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loomis, Wendy P.</creatorcontrib><creatorcontrib>den Hartigh, Andreas B.</creatorcontrib><creatorcontrib>Cookson, Brad T.</creatorcontrib><creatorcontrib>Fink, Susan L.</creatorcontrib><title>Diverse small molecules prevent macrophage lysis during pyroptosis</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Pyroptosis is a programmed process of proinflammatory cell death mediated by caspase-1-related proteases that cleave the pore-forming protein, gasdermin D, causing cell lysis and release of inflammatory intracellular contents. The amino acid glycine prevents pyroptotic lysis via unknown mechanisms, without affecting caspase-1 activation or pore formation. Pyroptosis plays a critical role in diverse inflammatory diseases, including sepsis. Septic lethality is prevented by glycine treatment, suggesting that glycine-mediated cytoprotection may provide therapeutic benefit. In this study, we systematically examined a panel of small molecules, structurally related to glycine, for their ability to prevent pyroptotic lysis. We found a requirement for the carboxyl group, and limited tolerance for larger amino groups and substitution of the hydrogen R group. Glycine is an agonist for the neuronal glycine receptor, which acts as a ligand-gated chloride channel. The array of cytoprotective small molecules we identified resembles that of known glycine receptor modulators. However, using genetically deficient Glrb mutant macrophages, we found that the glycine receptor is not required for pyroptotic cytoprotection. Furthermore, protection against pyroptotic lysis is independent of extracellular chloride conductance, arguing against an effect mediated by ligand-gated chloride channels. Finally, we conducted a small-scale, hypothesis-driven small-molecule screen and identified unexpected ion channel modulators that prevent pyroptotic lysis with increased potency compared to glycine. Together, these findings demonstrate that pyroptotic lysis can be pharmacologically modulated and pave the way toward identification of therapeutic strategies for pathologic conditions associated with pyroptosis.</description><subject>13</subject><subject>13/106</subject><subject>13/2</subject><subject>631/250/1933</subject><subject>631/80/82</subject><subject>Amino acids</subject><subject>Amino groups</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antigens, Bacterial - toxicity</subject><subject>Apoptosis</subject><subject>Bacterial Toxins - toxicity</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Caspase</subject><subject>Caspase 1 - metabolism</subject><subject>Caspase-1</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Death</subject><subject>Cells, Cultured</subject><subject>Chloride channels</subject><subject>Chloride conductance</subject><subject>Cytoprotection - drug effects</subject><subject>Glycine - analogs &amp; derivatives</subject><subject>Glycine - chemistry</subject><subject>Glycine - metabolism</subject><subject>Immunology</subject><subject>Inflammatory diseases</subject><subject>Ion Channels - metabolism</subject><subject>Ion Channels - physiology</subject><subject>Lethality</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Lysis</subject><subject>Macrophages</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Neuromodulation</subject><subject>Pyroptosis</subject><subject>Pyroptosis - physiology</subject><subject>Receptors, Glycine - agonists</subject><subject>Receptors, Glycine - antagonists &amp; inhibitors</subject><subject>Receptors, Glycine - metabolism</subject><subject>Salmonella</subject><subject>Sepsis</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kFtLwzAYhoMobsz9AG-k4HU1p7bJjaDzCANv9Dqk6detoyeTdrB_b0rnnBcGcuDLm_d78yB0SfANwUzcOk44kSH2k0SRDPkJmlLMSciFkKdH5wmaO7fBfjCGaRSfownDMolkIqbo4bHYgnUQuEqXZVA1JZi-BBe0FrZQd0GljW3atV5BUO5c4YKst0W9CtqdL3eNr1ygs1yXDub7fYY-n58-Fq_h8v3lbXG_DA1PcBemAidGppGMIU6ylDBIcg0-FRCcslj4hbBIAqXU6JRyLbGWEhuWM2KyFLMZuht92z6tIDM-ndWlam1RabtTjS7U35u6WKtVs1Uxj6Tg3Btc7w1s89WD69Sm6W3tMytKcSIFjmPqVWRU-X87ZyE_dCBYDeTVSF558mogrwbnq-Nohxc_nL2AjgLXDvTA_rb-3_UbifiPvQ</recordid><startdate>20190411</startdate><enddate>20190411</enddate><creator>Loomis, Wendy P.</creator><creator>den Hartigh, Andreas B.</creator><creator>Cookson, Brad T.</creator><creator>Fink, Susan L.</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1705-0103</orcidid></search><sort><creationdate>20190411</creationdate><title>Diverse small molecules prevent macrophage lysis during pyroptosis</title><author>Loomis, Wendy P. ; den Hartigh, Andreas B. ; Cookson, Brad T. ; Fink, Susan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b807c9b596e67db13e7fae000e10b3680b31359e222cab24a90a990c3f31cdb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>13/106</topic><topic>13/2</topic><topic>631/250/1933</topic><topic>631/80/82</topic><topic>Amino acids</topic><topic>Amino groups</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antigens, Bacterial - toxicity</topic><topic>Apoptosis</topic><topic>Bacterial Toxins - toxicity</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Caspase</topic><topic>Caspase 1 - metabolism</topic><topic>Caspase-1</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Death</topic><topic>Cells, Cultured</topic><topic>Chloride channels</topic><topic>Chloride conductance</topic><topic>Cytoprotection - drug effects</topic><topic>Glycine - analogs &amp; derivatives</topic><topic>Glycine - chemistry</topic><topic>Glycine - metabolism</topic><topic>Immunology</topic><topic>Inflammatory diseases</topic><topic>Ion Channels - metabolism</topic><topic>Ion Channels - physiology</topic><topic>Lethality</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Lysis</topic><topic>Macrophages</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Neuromodulation</topic><topic>Pyroptosis</topic><topic>Pyroptosis - physiology</topic><topic>Receptors, Glycine - agonists</topic><topic>Receptors, Glycine - antagonists &amp; inhibitors</topic><topic>Receptors, Glycine - metabolism</topic><topic>Salmonella</topic><topic>Sepsis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loomis, Wendy P.</creatorcontrib><creatorcontrib>den Hartigh, Andreas B.</creatorcontrib><creatorcontrib>Cookson, Brad T.</creatorcontrib><creatorcontrib>Fink, Susan L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loomis, Wendy P.</au><au>den Hartigh, Andreas B.</au><au>Cookson, Brad T.</au><au>Fink, Susan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse small molecules prevent macrophage lysis during pyroptosis</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2019-04-11</date><risdate>2019</risdate><volume>10</volume><issue>4</issue><spage>326</spage><pages>326-</pages><artnum>326</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Pyroptosis is a programmed process of proinflammatory cell death mediated by caspase-1-related proteases that cleave the pore-forming protein, gasdermin D, causing cell lysis and release of inflammatory intracellular contents. The amino acid glycine prevents pyroptotic lysis via unknown mechanisms, without affecting caspase-1 activation or pore formation. Pyroptosis plays a critical role in diverse inflammatory diseases, including sepsis. Septic lethality is prevented by glycine treatment, suggesting that glycine-mediated cytoprotection may provide therapeutic benefit. In this study, we systematically examined a panel of small molecules, structurally related to glycine, for their ability to prevent pyroptotic lysis. We found a requirement for the carboxyl group, and limited tolerance for larger amino groups and substitution of the hydrogen R group. Glycine is an agonist for the neuronal glycine receptor, which acts as a ligand-gated chloride channel. The array of cytoprotective small molecules we identified resembles that of known glycine receptor modulators. However, using genetically deficient Glrb mutant macrophages, we found that the glycine receptor is not required for pyroptotic cytoprotection. Furthermore, protection against pyroptotic lysis is independent of extracellular chloride conductance, arguing against an effect mediated by ligand-gated chloride channels. Finally, we conducted a small-scale, hypothesis-driven small-molecule screen and identified unexpected ion channel modulators that prevent pyroptotic lysis with increased potency compared to glycine. Together, these findings demonstrate that pyroptotic lysis can be pharmacologically modulated and pave the way toward identification of therapeutic strategies for pathologic conditions associated with pyroptosis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30975978</pmid><doi>10.1038/s41419-019-1559-4</doi><orcidid>https://orcid.org/0000-0003-1705-0103</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2019-04, Vol.10 (4), p.326, Article 326
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6459844
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA Free Journals
subjects 13
13/106
13/2
631/250/1933
631/80/82
Amino acids
Amino groups
Animals
Antibodies
Antigens, Bacterial - toxicity
Apoptosis
Bacterial Toxins - toxicity
Biochemistry
Biomedical and Life Sciences
Caspase
Caspase 1 - metabolism
Caspase-1
Cell Biology
Cell Culture
Cell Death
Cells, Cultured
Chloride channels
Chloride conductance
Cytoprotection - drug effects
Glycine - analogs & derivatives
Glycine - chemistry
Glycine - metabolism
Immunology
Inflammatory diseases
Ion Channels - metabolism
Ion Channels - physiology
Lethality
Life Sciences
Ligands
Lysis
Macrophages
Macrophages - drug effects
Macrophages - metabolism
Macrophages - microbiology
Mice
Mice, Inbred BALB C
Neuromodulation
Pyroptosis
Pyroptosis - physiology
Receptors, Glycine - agonists
Receptors, Glycine - antagonists & inhibitors
Receptors, Glycine - metabolism
Salmonella
Sepsis
title Diverse small molecules prevent macrophage lysis during pyroptosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20small%20molecules%20prevent%20macrophage%20lysis%20during%20pyroptosis&rft.jtitle=Cell%20death%20&%20disease&rft.au=Loomis,%20Wendy%20P.&rft.date=2019-04-11&rft.volume=10&rft.issue=4&rft.spage=326&rft.pages=326-&rft.artnum=326&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-019-1559-4&rft_dat=%3Cproquest_pubme%3E2207980662%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207980662&rft_id=info:pmid/30975978&rfr_iscdi=true